腐殖酸铵基炭材料的制备、改性及其电容性能研究

来源 :河南理工大学 | 被引量 : 0次 | 上传用户:shi123abc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文选用廉价易得的腐殖酸铵作为碳前驱体,采用简单工艺合成了一系列杂原子掺杂以及金属氧化物负载的腐殖酸铵基复合材料,分别研究了它们的物理化学特性,并考察了用作超级电容器电极材料的电化学性能。
  将H3BO3与腐殖酸铵混合,通过一步炭化法制备了B/N共掺杂多孔炭纳米片。研究表明,BNHC-800样品中孔率高(40.84%),BCO官能团丰富(可提供赝电容)。BNHC-900样品具有较高的比表面积(592m2g?1)和总孔容(0.314cm3g?1)。BNHC-2样品具有2D纳米片状形貌、较高的B含量(3.96at%)和石墨化度,中孔率高达60.5%。BNHC-1、BNHC-1.5和BNHC-2电极材料在较高的活性材料质量负载(~13mg cm-2,电极片厚度~180μm)条件下,比电容仍分别高达196F g-1、173F g-1和202F g-1(0.05A g-1)。首次提出,在较低的温度条件下(900℃),仅通过增加H3BO3用量即可激发BCO2向BC3的转化。
  利用氯化镍和乙酸镍对BNHC-1.5进行改性,制备了比表面积、孔结构、石墨化度和表面化学性质(Ni/B/N多元共掺杂)全面优化的BNHC-1.5-L2Y2样品。电化学研究表明,BNHC-1.5-L2Y2样品具有较高的比电容(245F g-1,0.05A g-1)、较小的压降和优异的倍率特性(211F g-1,5A g-1)。两种镍盐的作用机理是:氯化镍在炭化过程中主要通过化学反应发挥活化造孔作用,显著提高炭材料的比表面积;而乙酸镍主要基于模板造孔作用,形成了孔径均一、连通性好的中大孔结构。
  以氯化铁与腐殖酸铵为主要原料,采用简单的溶剂热—炭化法制备Fe3O4/多孔炭复合材料。当氯化铁与腐殖酸铵质量比为3时,制备的Fe3O4/SHAC-3材料中Fe3O4颗粒分散较好,颗粒尺寸均一、结晶度较高。用作水系对称超级电容器电极材料,展现了较高的体积比电容253F cm-3,其中Fe3O4有明显的赝电容效应。构筑了BNHC-1.5-L2Y2//Fe3O4/SHAC-3水系不对称超级电容器,在3mol L-1的KOH电解液中的电位窗口可达1.2V,比电容可达75F g-1(0.2A g-1),功率密度为9661W kg-1时能量密度可达8.9Wh kg-1。
  本研究制备了一系列具有优异电化学性能的腐殖酸铵基复合材料,工艺简单易行,原料廉价易得,为开发新型高性能的储能材料提供了新思路。
其他文献
日新月异的信息技术和不断深入的经济全球化进程促进了各行各业的蓬勃发展,这给许多面向项目运营的业务模式带来了前所未有的机遇,同时也导致项目变得规模庞大而复杂,特别对于规模以上项目,单个企业很难胜任,需要挑选若干合适的伙伴共同完成。并且,项目所处环境与运行过程中存在政策、天气、金融、人的行为与心理等在内的不确定性因素,导致项目面临的不确定性和风险大大增加。因此,作为项目管理中的重要环节,不确定环境下的
在现代工业体系中,面对日益复杂化韵被控对象,传统的集中式控制策略逐渐难以满足对生产控制的综合要求。为了解决复杂的大型系统的控制问题,越来越多的学者开始关注多智能体系统。由于多智能体系统是通过多个智能体之间的相互协作来完成特定的复杂控制目标,所以它具有设计灵活性高,鲁棒性强等优点。考虑到在实际生产过程中多智能体系统规模较大,通讯网络结构复杂,所以随着时间的增长和内外部条件的变化,系统不可避免地会出现
学位
医学图像处理与分析是指利用计算机对医学图像进行自动处理、特征抽取和分类的技术。由于眼底图像结构复杂,使得目前的眼底图像智能处理与分析方法仍存在诸多的关键技术难点,例如光照不均和低对比度下的目标定位、复杂背景下的目标精准提取、样本不平衡情况下的目标分类等。本文在分析总结国内外相关研究成果的基础上,针对现有方法的不足,提出了多种新型且有效的方法用于眼底目标智能分析与检测任务,包括视神经盘、视网膜血管、
学位
由于灵活的结构设计和优异的光学性能,光子晶体光纤是目前新型光电器件领域的研究热点之一。光纤传感具有抗电磁干扰、灵敏度高、绝缘性好、可实现分布式测量等优点,光子晶体光纤的多孔特性有利于通过填充光电功能材料扩展或提升其性能,光子晶体光纤的D型化并镀膜处理有利于增强光纤的倏逝场与被测物质的交叠。由于光子晶体光纤结构的特殊性,其制备工艺的难度一直限制着光子晶体光纤在传感领域的发展。本文数值研究了材料填充和
随着数字化中国的推进,中国已经全面迈向了信息化的时代。无线传感器网络作为物联网主要的技术支撑应用前景广泛,现已应用于军事作战、环境监测、医疗卫生、工业生产、智能家居等领域。定位技术作为无线传感器网络最关键的技术之一,备受研究者们的关注。本文以室内环境为对象进行研究,在总结了国内外研究现状的基础上,对非视距环境下的无线传感器网络静态节点和动态节点定位问题进行深入研究,旨在实现复杂环境下高精度、自适应
在过去的近二十年中,由于信息科学技术的飞速发展,使得包括机器人、冶金、化工、微电网、航空、风力发电等行业发生了巨大的变化。如何使用工业过程中产生的大量数据来实现目标系统的优化控制的问题,一直都是工程控制领域的难点问题之一。随着大数据技术的发展,基于数据驱动的控制方法得到了前所未有的关注。因此,本文将数据驱动技术与自适应动态规划(ADP)算法相结合,研究了离散时滞系统的优化控制问题。首先,针对模型未
学位
模和子模函数的top-k优化问题一直是策略优化问题的重点和难点。近年来,随着人工智能的兴起,模函数和子模函数被用到了越来越多的实际应用建模中。在建模实际应用中,为了适用更多的应用场景,研究者们都希望在更普适的模型下研究模函数和子模函数top-k优化问题。基于以上背景,本文选择了模函数优化中最受关注的多臂赌博机问题,和子模函数优化中最受关注的影响力最大化问题展开了研究。本文立足于更普适的模型下研究这
单变量时间序列通常是一组以均匀时间间隔隔开的连续时间点上的测量值。它是一种结构化的数据,具有高维,序列长度不一,观测值在时序上存在一定的依赖关系等特点。典型的基于模型的方法(如回声状态网络)为每个时间序列训练出一个函数模型,在模型空间中用函数模型之间的相似性来度量原始数据之间的距离,然而在非欧的模型空间中,传统的欧式距离度量方式已经不能很好地满足要求,因此探索出具有鉴别力的距离度量方式有助于提高模
[db:内容简介]
该文简要的介绍了电去离子(Electrodeionization,简称EDI)的工作原理,提出了水中杂质离子在EDI中的四个传质过程,即(1)杂质离子从水相到树脂相的传质;(2)杂质离子在树脂相中的传质;(3)杂质离子从水相到离子选择性交换膜的传质;(4)杂质离子在离子选择性交换膜内的电迁移传质;并推导出上述四个过程的传质速率方程.该文对EDI去除总氨(包括非离子态氨和离子态氨)的研究,其目的主要
学位
EDI