【摘 要】
:
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell:PEMFC)具有效率高、响应速度快等优点,被认为是最有前途的能量转换装置之一。在PEMFC的组成中,夹在微孔层和膜之间的催化剂层(Catalyst Layer:CL)是最复杂和最重要的,因为它是发生能量转换的地方。PEMFC催化层微观结构对燃料电池性能的影响并不像其它组成结构那样简单,因为催化层中的各种组分和
论文部分内容阅读
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell:PEMFC)具有效率高、响应速度快等优点,被认为是最有前途的能量转换装置之一。在PEMFC的组成中,夹在微孔层和膜之间的催化剂层(Catalyst Layer:CL)是最复杂和最重要的,因为它是发生能量转换的地方。PEMFC催化层微观结构对燃料电池性能的影响并不像其它组成结构那样简单,因为催化层中的各种组分和输运过程相互影响。因此,需要全面了解催化层微观结构及其与相应传输机制的相互作用,以改善催化层在各种条件下的性能。本文基于Nano-CT技术重构PEMFC催化层三维微观结构,考虑微纳尺度下Knudsen效应,利用细观CFD方法,对其中热、质传输及电化学过程进行模拟。主要获得以下结论:(1)催化层中气体的有效扩散系数随着孔隙率增大而增大;考虑Knudsen扩散时的有效扩散系数均小于不考虑Knudsen效应时的值;Bruggmen高估了气体有效扩散系数。催化层中有效电子电导率/有效质子电导率随碳/离聚物体积分数增大而增大。(2)电化学反应从CL/PEM界面向CL/GDL界面逐渐进行,电流密度逐渐降低;计算条件下,质子传导是影响反应强度的主要因素;3s时体系基本稳定。(3)O2浓度从CL/GDL界面向CL/PEM界面逐渐降低。温度分布趋势与电流密度一致,体系稳定时CL/PEM与CL/GDL界面温差为0.2 K;从开始到稳定,催化层整体温度增加了0.6 K左右。(4)液态水饱和度从CL/PEM界面向CL/GDL界面逐渐降低;在任意等值面上,膜态水分布呈丘陵状,高低起伏,造成这一现象的原因与催化层内部复杂的孔结构、各处电化学反应强度及离聚物润湿度有关。(5)催化层中存在一定量的死孔(Dead pore),O2无法进入,因此也不会发生电化学反应;多处半岛式结构中氧气与质子的传输不匹配,影响反应的效率。
其他文献
表面增强拉曼散射光谱(Surface-Enhanced Raman Scattering,SERS)与光纤结合制备出的SERS光纤探针在检测领域具有巨大的应用潜力。近些年随着纳米合成工艺的发展,形貌为多分支状的金银合金纳米粒子被合成出来。因金银合金纳米星优异的SERS性能而吸引了相关研究者的关注。将金银合金纳米星与光纤进行组装非常有希望制备出高性能的SERS光纤探针。本文围绕着实现三种粒径形貌金银
聚合物改性沥青以其优良的高低温性能已被广泛应用于防水领域。然而,受热和紫外光的影响导致屋面防水材料性能劣化,会大大缩短防水层的服役寿命。目前,关于聚合物改性沥青防水卷材热老化和光热耦合老化研究还较少,因此,研究不同种类聚合物改性沥青防水卷材的老化性能,对于提高聚合物改性沥青防水卷材的抗老化能力,延长其服役寿命具有重要的指导意义。本文采用苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、胶粉为改性剂,有机
锂硫电池(LSBs)是如今前景可观的可充电电池体系之一。它之所以为人们关注,是因为它具有非常高的理论能量密度,高理论比容量的优点。并且硫在自然界的储量丰富,无毒。但是由于硫及其反应的最终产物Li2S是绝缘体导致硫阴极导电性差,并且过程中多硫化物Li2Sn(4≤n≤6)会溶解于电解液中并扩散到阳极与锂金属发生反应生成Li2S并沉淀于阳极,导致电池的库伦效率低、自放电严重以及快速地容量衰减,反应过程中
驾驶员的注意力状态是影响交通安全的重要人为因素。驾驶分心或者驾驶疲劳等造成的注意力分配不足将会导致严重的交通事故。注意是一种大脑的高级认知功能,其神经机制涉及广泛的大脑网络结构。注意网络包括警觉、定向和执行控制三个子功能。为了探索驾驶员的危险驾驶行为与注意功能网络之间的关系,设计了模拟驾驶实验和三个注意功能认知实验;对危险驾驶行为进行了梳理,根据车辆异常行驶状态将其分为错误(车辆失控或出现强烈碰撞
近年来,在航空航天领域对轻量化需求愈加强烈,铝合金搅拌摩擦焊(Friction Stir Welding,FSW)拼焊技术是实现其轻量化的先进制造技术之一。拼焊成形后零件在潮湿环境中使用,极易发生晶间腐蚀和剥落腐蚀,直接影响构件性能,缩短使用寿命,因此耐腐蚀性能尤为重要。针对国内外关于铝合金拼焊成形后接头腐蚀性能研究较少及室温成形性差等问题,需要对铝合金FSW拼焊成形后接头腐蚀性能进行研究,重点研
汽车轻量化和安全性是国家重大需求,也是汽车重要的发展方向。高强钢热冲压构件在保证汽车轻量化的同时满足安全性能要求。然而,热冲压时高温变形组织急剧变化,导致成形后构件塑韧性大幅下降,造成强韧性协调困难。将伺服成形与热冲压工艺结合,调控构件微观组织结构,是解决强韧性协同问题的有效途径。基于此,本文提出基于非均匀有理B样条模型和热加工图的伺服工艺设计方法,并通过热力耦合变形条件调控获得超细马贝复相组织,
在全球能源短缺、环境恶化、排放法规日益严格的背景下,节能环保成为汽车工业发展的主题,发展新能源汽车已成为当下潮流。混合动力汽车因兼具纯电动汽车与传统汽车的优点成为当前研究热点,其中增程式汽车被认为是从传统的燃油汽车向纯电动汽车过渡的理想车型,因此本文以增程式汽车为研究对象,展开参数匹配设计和控制策略及优化研究。首先根据整车基本参数和性能指标设计要求,结合汽车理论及电动汽车设计相关知识,对增程式汽车
车辆队列行驶作为一种具有代表性的智能驾驶模式,可有效减小车辆的气动阻力,在减少燃料消耗及尾气排放方面具有巨大的潜力。但由于队列行驶时间距减小,后车进入前车尾流区,导致后车发动机舱内散热条件变得恶劣,若调整风扇转速以满足发动机散热需求,则后车因气动阻力降低而节省的油耗将受到影响。因此,在研究队列车辆燃油经济性时,考虑发动机散热性能是十分必要的。本文以三辆轿车队列及轿车尾随半挂车队列为例,利用三维流场
近年来,都市化进程加快,城市停车设备无法满足日益增长的停车需求,机械式立体车库凭借提升城市空间利用率、环境适应能力强等独特的优势已然成为解决城市停车难民生问题的重要方法之一。但是,立体车库整体结构笨重,相关优化技术落后,无法获得立体车库最佳的轻量化和高性能综合优化结果。针对上述背景,本文以垂直循环式立体车库为研究对象,采用试验设计、近似模型等技术,对多工况下立体车库进行静力、防风、抗震等力学性能分
质子交换膜燃料电池是一种高效、清洁的新型能源,具有广阔的应用前景。它在长期运行或者闲置后,容易发生应力松弛,这会增加金属双极板与膜电极组件之间的接触电阻,导致质子交换膜燃料电池堆的性能和寿命下降。因此补偿电池电堆应力松弛,维持电堆正常工作的夹紧力,提高电池的性能和延长寿命具有重要意义。本文基于准零刚度理论,对25Kw燃料电池电堆的应力补偿问题进行了研究,主要工作和结论如下:(1)针对通常所用的利用