论文部分内容阅读
耐磨性能是所有齿轮应具备的最重要性能之一,对于一些在特殊工况下工作的齿轮,还要求其具有高耐腐蚀性和耐高温氧化性等。目前的齿轮表面强化手段并不能完全满足特殊用途高性能齿轮的要求。目前所用的齿轮强化工艺,如PVD、CVD和TD等技术均无法同时获得大层深和高硬度兼备的涂层。因而用复合强化手段在齿轮表面制备梯度涂层已成为目前齿轮表面强化研究的热点。本文针对传统工艺不能获得结合良好并在表层形成超细晶的梯度涂层的特点,在理论分析强流脉冲电子束(HCPEB)对梯度涂层改性作用的基础上,采用化学热处理复合工艺制备了两种可用于特殊场合的齿轮涂层,并开展相应工艺、组织和性能研究。利用HCPEB改性用PVD方法制备的Cr/CrN涂层,研究其微观组织结构和性能,结果表明,HCPEB技术对材料表层力学性能的影响深度高达450μm,适当的HCPEB工艺参数可使梯度涂层在保留一定厚度的同时,还可使涂层元素扩散到一定深度,实现涂层的冶金结合,从而使涂层的结合力提高2倍以上。组织性能实验分析表明,对于经HCPEB工艺改性后的涂层材料,影响其摩擦磨损性能的因素很多,主要包括涂层与基体硬度的关系、涂层的厚度、表面粗糙度及磨屑,其中涂层或改性层硬度与厚度及结合力是影响涂层磨损性能的重要因素,在一定范围内的粗糙度对涂层材料的磨损并不会起到决定性的作用。并且氧化磨损和疲劳磨损并存是Cr/CrN被HCPEB改性前、后的主要磨损方式。根据渗碳、渗氮等传统工艺可使改性层的厚度高达mm级、电沉积Cr层具有高耐磨性和耐腐蚀性,同时HCPEB技术具有可在极短时间内作用到具有复合强化涂层的齿轮表面,并瞬间引发表层熔融、汽化、及应力波、冲击波和增加扩散等一系列物理化学反应等特点,设计了复合HCPEB技术、热扩渗C、N和电沉积Cr工艺相结合的工艺路线,通过组织和性能研究结果表明,可得到厚度高达100μm的纳米级等轴晶粒结构Cr层,在渗C、N层两边的界面都有来自相邻涂层的扩散元素,使得涂层截面硬度缓慢梯度过渡,断口没有明显的分界,从表层到内部为解理断口过渡到韧窝断口,并且还拥有良好的耐磨性和耐腐蚀性。另外,结合渗B层可以达到超高硬度和高红硬性,再次设计了复合HCPEB、热扩渗C、N和扩渗B工艺想结合的工艺路线,通过组织和性能研究结果表明,扩渗B层工艺的改性层厚度高达305μm,涂层的硬度高达1400HV,最终梯度过渡到700HV左右,层与层之间元素相互扩散,结合紧密,另外从表面到心部依次为韧窝→解理→准解理→韧窝的断口形貌进一步证明了他的优良力学性能。本文提出了HCPEB工艺、PVD、热扩渗技术与化学沉积技术的齿轮表面复合涂层新工艺,并具体实现了HCPEB、PVD Cr/CrN涂层;HCPEB、热扩渗C、N和电沉积Cr;HCPEB、热扩渗C、N和扩渗B三条具体的齿轮表面复合涂层制备工艺,系统研究了各工艺条件下的齿轮材料的表面形貌、表层硬度、表面粗糙度、涂层结合力以及摩擦磨损性能等。实现了齿轮涂层的超细晶及表层力学性能的梯度过渡。