论文部分内容阅读
采用纳米TiO2改性聚丙烯/聚酰胺6(PP/PA6)共混物既可提升基体材料力学性能,又能赋予基体材料抗菌等功能。为提高纳米TiO2与基体聚合物的相容性并防止其团聚采用了含不同官能团的硅烷偶联剂和甲苯-2,4-二异氰酸酯(TDI)对纳米TiO2进行表面修饰,通过润湿性测试对表面修饰效果进行了评价分析,发现采用TDI表面修饰效果最好。在此基础上系统研究了投料比、反应温度和反应时间等因素对TDI与纳米TiO2表面羟基(—OH)间化学反应的影响;结果表明,在投料比[TDI[/[—OH]=6:1(mol/mol),反应温度为95℃,反应时间为6 h时,纳米TiO2表面—OH反应程度达92.31 mol%。利用红外光谱(FTIR)和热失重分析(TGA)对表面修饰纳米TiO2进行测试分析表明,TDI以化学键形式连接在纳米TiO2表面;此外,还利用透射电镜(TEM)对TDI修饰纳米TiO2观察发现,纳米TiO2能均匀分散在甲苯中并保持原始尺寸。通过熔融共混法利用表面修饰纳米TiO2表面—NCO与PA6的端氨基(—NH2)和羧基(—COOH)间的化学反应以增强纳米TiO2与PP/PA6间的界面作用制备了PP/PA6/TiO2纳米复合材料。对PP/PA6/TiO2纳米复合材料静态力学和动态力学性能测试发现,少量纳米TiO2能显著提高基体材料力学性能;填充5份大分子增容剂PP-g-MAH和3份表面修饰纳米TiO2能使PP/PA6/TiO2纳米复合材料综合性能达到最优;相对PP/PA6共混物其拉伸强度、缺口冲击强度和弯曲强度分别提高了50.55%、71.84%和52.58%。采用扫描电镜(SEM)和透射电镜(TEM)等测试技术对PP/PA6/TiO2复合材料的形态结构以及纳米TiO2的分散状况进行了研究,发现PA6以分散相均匀分散在连续相PP中,纳米TiO2主要分散在PA6相以及PP与PA6界面区域。此外,还发现纳米TiO2和PP-g-MAH加入到PP/PA6共混物中能使分散相PA6相尺寸减小,说明纳米TiO2对共混物具有良好的增容作用;在添加纳米TiO2的基础上继续添加PP-g-MAH能进一步提升基体材料的力学性能。采用DSC方法系统研究了PP/PA6/TiO2纳米复合材料等温和非等温结晶动力学及其熔融行为。用Avrami方法对等温结晶动力学分析发现,对非增容复合材料,纳米TiO2加快了PP和PA6相的等温结晶速率。结晶成核理论计算结果表明纳米TiO2促进了PP和PA6相的成核。对增容复合材料而言,对PP相等温结晶性能的影响不大,但纳米TiO2能显著影响PA6相的等温结晶行为,由于部分PA6分子链接枝了纳米TiO2使其运动受到阻碍,使结晶速率下降,等温结晶活化能增大。对等温结晶熔融行为研究发现,所有的PP/PA6/TiO2纳米复合材料中PP相基本上是呈熔融单峰;PA6相呈现多重熔融峰,较高结晶温度下表现为双重熔融峰,较低温度下表现为三重熔融峰。纳米TiO2使熔融峰Ⅰ和Ⅱ的温度升高,这是因为纳米TiO2对PA6具有成核作用,生成更为完善的晶体。熔融峰Ⅲ是更稳定晶体熔融的结果,熔融温度基本上不随结晶温度而变化。多重熔融峰是由不同尺寸或不同完善程度的晶体在升温过程中再结晶和再熔融引起的。非等温结晶动力学研究发现,纳米TiO2对PP和PA6相起到异相成核作用,使结晶在较高温度下开始;但纳米TiO2的存在又阻碍了结晶增长使其结晶速率减慢。低含量时,纳米TiO2能降低非等温结晶活化能;随着纳米TiO2含量的提高,增容体系中PA6相的活化能有所提高。纳米TiO2的存在使结晶度下降,而结晶度随着冷却速率的提高呈先增加后下降的变化趋势。这是因为纳米TiO2对聚合物的结晶具有两方面的影响,一方面对聚合物起到成核作用,另一方面,纳米TiO2与聚合物间的相互作用又阻碍了大分子链的自由运动。这两种作用相互竞争,导致结晶度的这种变化。非等温结晶熔融行为发现PA6相也出现了多重熔融峰,随降温速率不同表现为单熔融峰或双重熔融行为。对PP/PA6/TiO2纳米复合材料稳态流变和动态流变性能测试发现,少量纳米TiO2能使PP/PA6/TiO2纳米复合材料熔体黏度下降;在增容体系中添加一定量的纳米TiO2使其流动指数(非牛顿指数)n值增大,但纳米TiO2量超过一定量时,流动指数n反而又会减小,使PP/PA6/TiO2纳米复合材料的假塑性增强;少量纳米TiO2使流活化能降低,熔体黏度对温度的敏感性下降,这是由于纳米TiO2在基体聚合物中分散均匀,对基体聚合物良好的润滑作用所引起的。动态流变性能研究发现,少量纳米TiO2使PP/PA6/TiO2纳米复合材料的剪切储能模量G′,损耗模量G″和复数黏度η*都有所提高,由此表明纳米TiO2能同时赋予基体材料以良好的弹性和黏性。抗菌实验表明,在2h内,PP/PA6/TiO2纳米复合材料对枯草芽孢杆菌、金黄色葡萄球菌和大肠杆菌的抗菌率达90%以上。热稳定性能研究表明,纳米TiO2能明显提高PP/PA6基体材料的热稳定性;此外,从热失重数据可知理论失重率和实际失重率在误差范围内相等,说明纳米TiO2在PP/PA6基体中分散均匀。