【摘 要】
:
天线作为电子系统的前端组成部分,在整个系统中起着至关重要的作用。为了适应现代社会的飞速发展,研究如何能让天线在更宽的频率范围内达到更加稳定的电性能指标已经是无线系
论文部分内容阅读
天线作为电子系统的前端组成部分,在整个系统中起着至关重要的作用。为了适应现代社会的飞速发展,研究如何能让天线在更宽的频率范围内达到更加稳定的电性能指标已经是无线系统的发展趋势。同时随着大规模集成电路的不断发展,天线的小型化设计显然具有十分重要的实际意义。另外,天线的稳定性和可靠性也都是很重要的性能指标,加载天线罩可以使天线免受环境的干扰,但天线罩会对天线的性能产生影响。因此,研究如何减小天线罩对天线的影响具有十分重要的实际应用。本文具体研究内容如下:(1)宽带小型化介质谐振器天线的设计与优化。依据谐振腔的辐射原理,本文采用了叠层结构的介质谐振器天线作为研究对象。通过使用特殊结构来实现单层宽带介质谐振器天线,并采用叠层结构、开空气孔的方法来实现宽带化以及高介电常数的介质壁来实现天线的小型化,最终天线的工作频带范围为4GHz~12GHz。将设计的天线单元组阵并放入天线罩内进行仿真,通过改变天线阵列的结构来进行优化设计,发现角度改变对天线的性能影响较大。(2)宽带小型化Vivaldi天线的设计与优化。依据非频变天线的设计原理,本文采用了异面结构的对踵Vivaldi天线作为研究对象。通过加载技术、优化天线形状结构以及特殊的介质基板等方法来设计了一款微带线馈电的Vivaldi天线,最终天线的工作频带范围为2GHz~18GHz。将设计的天线单元组阵并放入天线罩内进行仿真,通过改变天线阵列的结构来进行优化设计。对天线进行加工,测试结果与仿真相吻合。(3)超材料吸波体的设计与应用。由于天线罩对天线的性能产生影响,本文采用在天线罩内加载吸波材料来优化天线的方向图性能。首先,根据吸波原理采用多层结构,设计了一款宽带的超材料吸波体,其在7GHz~18GHz的频带范围内吸波率都达到了90%。其次,在天线罩内加入普通的ECC吸波材料进行仿真分析,发现在低频部分天线的性能得到优化,但超过9GHz的范围性能不佳。最后,将设计的超材料吸波体应用在高频范围,仿真发现天线的性能得到一定优化。
其他文献
低功耗、频谱资源紧缺与高速率、高覆盖率一直以来都是无线通信系统亟待解决的问题。与传统的多天线系统相比,大规模多输入多输出(Multi-Input Multi-Output,MIMO)系统,有效地开发空间资源,提高时域和频域的资源利用率,给系统带来了极大的容量增益。全双工技术采用的是同时同频双向传输模式,实现双向通信,在通信过程中使用相同的信道资源。因此,如果能够有效地应用全双工通信,即收发机在相同
Polar码是一种基于信道极化理论的新型信道编码方法,且能够达到二进制离散无记忆信道的信道容量,同时其编译码复杂度较低。Polar码在各种应用方面的研究受到了广泛关注。多层式单元(Multi-Level Cell,MLC)型NAND闪存作为一种非易失性存储,凭借其存储容量大、功耗低及存储成本小,已成为存储市场中的主流。但由于其存储密度的增加导致了数据存储的可靠性降低,从而极大地缩短了闪存的使用寿命
智能终端设备和移动互联网的飞速发展,对无线通信技术提出更高的传输质量与系统容量的需求。由于毫米波的频谱资源更为丰富,毫米波通信成为无线通信领域的研究热点。大规模MIMO和波束成形技术能有效弥补毫米波的巨大路径损耗,成为了毫米波通信的关键技术。全数字波束成形由于成本高、能耗大等特点,难以应用于毫米波通信。混合波束成形结合了数字域和模拟域的波束成形,能有效减少射频链路数,降低系统的复杂度,成为毫米波通
伴随着Wi-Fi网络的大规模建设和移动终端内嵌Wi-Fi接收机的普及,基于Wi-Fi信号的室内定位成为学术界和工业界广泛关注的热点。随着机器学习的发展,基于Wi-Fi的室内定位可以通过机器学习技术来解决。作为一种新的机器学习技术,极限学习机(ELM)具有学习速度快,计算复杂度低,泛化性能好等优点。但是当ELM理论直接用于室内定位,离线学习会存在过拟合的风险,定位结果稳定性弱。并且在数据异常情况下定
随着科技的发展人们对于图像质量的要求也越来越高,单纯从硬件方面进行提高,技术上已经达到瓶颈,且成本较高。研究者们想到从软件方面进行突破,有望克服硬件成像设备(如手机或摄像机等)的一些固有分辨率的限制,另一方面还可降低成本。因此,近年来图像超分辨率(SR,Super Resolution)算法研究成为了一个非常活跃的研究领域。现今SR算法可大体分为:基于插值的、基于重建的和基于学习的三类。基于插值的
图像作为当今社会一种常用的信息载体,其重要性与日俱增。随着图片使用量的日益增加,图像识别算法也随之成为人工智能领域一个非常热门的研究方向。近年来,有赖于卷积神经网络在图像识别领域的优异表现,越来越多的卷积神经网络优化方法和网络模型架构被研究者提出。但是,在网络性能提升的同时,随之而来的是急剧增加的网络复杂度,大多数先进网络拥有数百兆的参数量和数十亿的计算量。然而,随着卷积神经网络应用的增加,越来越
随着人工智能的发展,计算机视觉和自然语言处理交叉领域的研究逐渐引起科研工作者们的兴趣,指称表达理解(Referring Expression Comprehension,REC)就是其中之一。指称表达(R
随着2022年北京冬季奥运会的成功申办,球迷对冰球比赛的关注度大幅提升,对冰球赛况的预测分析方法也越来越多。在信息化快速发展的今天,冰球比赛数据的数据量和数据维度持续爆发式增长,数据规模和特征维数的增加给赛况预测研究提供了新的挑战。目前传统预测算法已经无法满足冰球赛况预测的需要,而研究发现,支持向量机(SVM)为分类预测问题提供了很好的解决思路,在处理非线性和高维数据的分类问题方面具有明显的优势。
随着大规模多输入多输出(Massive Multiple-Input Multiple-Output,MIMO)天线技术等无线通信技术的发展,无线通信的数据传输速率越来越高。在传统的无线通信系统中,干扰是限制系统性能的重要因素,干扰对齐(Interference Alignment,IA)技术作为一种有效的干扰管理方案,能够在满足可行性条件下使无线通信速率逼近信道容量。但是,面对用户数量和信息传输