论文部分内容阅读
光纤光栅具有与纤维光学系统兼容性好、免受电磁干扰、结构紧凑、工作波长可选择等诸多优点,在光纤通信和光纤传感等领域应用十分广泛,成为将来实现具有可重构、易更新特性的智能化全光网络的关键器件。利用取样函数对光纤光栅折射率进行周期性调制而形成的取样光纤光栅(SFG)具有多波长滤波特性,因而在波分复用(WDM)系统和多波长色散补偿方面有着重要的应用。利用特殊函数取样形成的SFG在其延迟谱上存在包含多个延迟通道的线性包络,为实现皮秒(ps)高分辨多波长通道线性延迟线提供可能。基于相控阵雷达系统(PAAs)的高分辨ps线性短延迟应用需求,课题提出利用Sinc2函数取样形成的Sinc2 SFG产生高分辨线性短延迟,利用傅里叶变换理论研究了 SFG空域纤芯折射率变化包络与其频域反射谱通道剖面形状的关系,并且分析了 SFG产生多波长通道的原理。利用耦合模理论模拟并分析了不同参数对其反射谱和延迟谱性能的影响。在此基础上我们对光栅及取样参数进行优化,模拟计算结果显示Sinc2 SFG能够提供平均延迟阶跃为0.25ps,以标准差表示的线性度为4.2%的16个线性延迟通道,由于Sinc2 SFG纤芯折射率变化在两侧存在快速变化的旁瓣,而且光栅周期只有微米量级,在制造上难以实现。因此提出利用高斯SFG获得线性程度较好的多通道ps延迟阶跃,模拟计算结果显示高斯SFG能够获得平均延迟阶跃为2.83ps,线性度为7.4%的8个线性延迟通道。我们采用高斯光束直写结合相位掩膜版技术制造了高斯SFG,讨论了制造过程中矩形狭缝的宽度对高斯SFG光谱包络形状产生的影响。设计并搭建了高分辨延迟测量系统并对系统进行优化,测量结果显示制造出的高斯SFG能够提供平均延迟阶跃为4.49ps,线性度约为10%的8个线性延迟通道,或者平均延迟阶跃为2.5ps,线性度约为8%的4个线性延迟通道,实验证明了高斯SFG能够提供多通道线性ps延迟补偿。我们提出了基于能带理论的等效级联F-P腔模型并且结合矩形截短函数有效地对高斯SFG的光谱特性进行了解释。通过外部调制的方式,利用宽带宽光源和可调谐光纤滤波器设计了基于高斯SFG的多通道可调谐线性ps光纤延迟线,平均延迟阶跃从2.8ps调谐到4.8ps,调谐范围为2ps。本课题通过理论计算和实验研究证明了 SFG能够提供大量线性度较好的ps短延迟,这种技术能够更简单地实现时域高分辨延迟信号处理和太赫兹(THz)信号的产生。