【摘 要】
:
高分子基硬质泡沫具有优异的隔热和比强度,在航空航天、国防军工等制造业具有广阔的应用前景。含苯并噁嗪腈基树脂(BZPN)是一种含双官能团种类的热固性高分子,独特的分子结构一方面赋予其良好的加工性能,另一方面给予其固化物优异的物理化学性能。BZPN固化时间短、固化温度低、固化物具有耐高温、高强度、高模量、抗腐蚀、自阻燃的性能,因此有望是制备高性能硬质泡沫的优良基体。基于此,BZPN作为耐高温阻燃型硬质
论文部分内容阅读
高分子基硬质泡沫具有优异的隔热和比强度,在航空航天、国防军工等制造业具有广阔的应用前景。含苯并噁嗪腈基树脂(BZPN)是一种含双官能团种类的热固性高分子,独特的分子结构一方面赋予其良好的加工性能,另一方面给予其固化物优异的物理化学性能。BZPN固化时间短、固化温度低、固化物具有耐高温、高强度、高模量、抗腐蚀、自阻燃的性能,因此有望是制备高性能硬质泡沫的优良基体。基于此,BZPN作为耐高温阻燃型硬质多孔泡沫的基体具有很大的潜在优势。本文以双官能团含苯并噁嗪腈基树脂(BZPN)为高分子基体,以偶氮二甲酰胺(AC)为发泡剂,以Tween-80为泡沫稳定剂,开展BZPN泡沫制备及应用研究。首先,通过将不同含量的发泡剂(AC)加入到BZPN中,进行化学发泡,得到了硬质多孔高分子泡沫,研究了AC含量对BZPN泡沫发泡效率,形貌,力学,热学等方面的影响。结果发现双官能团BZPN能自发泡,但发泡效率有限,泡沫的表面凹凸不平。加入AC后,其压缩强度和泡孔均匀性更加优异,故使用AC有助于提高发泡效率和均匀泡孔结构。另外,AC在整个体系中可做为固化剂使用。BZPN泡沫的压缩性能在很大程度上取决于泡孔结构而不是密度。BZPN泡沫具有优异的热稳定性,所得泡沫的T5%、Tmax和Cr分别高于370°C、400°C和60%。其次,研究了发泡工艺参数对BZPN泡沫泡孔结构、机械和热性能的影响。结果发现,BZPN泡沫前体的适宜发泡温度低于180℃。BZPN泡沫的结构、力学性能远远优于第二章所制备的泡沫。BZPN泡沫在压缩试验中具有分级断裂机制,其抗压强度可达6 MPa以上。在380℃以上的燃烧试验中,BZPN泡沫没有出现明显的软化和熔滴现象,保持了良好的宏观结构。最后,研究了煅烧温度对硬质多孔BZPN泡沫的影响以及BZPN泡沫在高温下的分解机理和产物。结果发现硬质多孔BZPN泡沫在高温下的分解分为三个阶段,第一阶段(200-400℃):一些未反应的氰基脱离主链、以及异吲哚和酞菁环中的弱键断裂,生成少量NH3、HCNO、CH4等;第二阶段(400-800℃):杂环化合物开环和苯环分解,生成的苯氧基自由基会降低苯环的稳定性,破坏树脂的骨架,并释放出CO、CO2等气体,同时,苯环分解释放CH4。第三阶段(800-1000℃):杂环和腺嘌呤结构的断裂导致产生了许多的芳香碎片,直至形成芳香石墨阵列。
其他文献
开发兼具高强度和良好延展性的金属材料是现代工程应用中长期以来具有挑战性的目标。高熵合金是21世纪新提出的一种不同于传统合金设计理念的新型合金,多种元素混合的特点使其具有优良的性能,因而在工程应用领域具有较大的开发潜力。中熵合金是高熵合金概念提出后,在其基础上细化出的一个分支,中熵合金的混合熵较高熵合金低一些,主元素数目较少。其中,CrCoNi中熵合金具有良好的韧性,这为获得高强度合金提供了较大的塑
钛合金凭借自身优异的力学性能、生物相容性和耐腐蚀性能,被广泛应用于生物医用领域。相较于传统的钛合金Ti6Al4V、纯钛和Ti2.5Fe6Al等,Ti28Nb2Zr8Sn合金具有低弹性模量、无毒元素和良好的生物相容性等优点,从而成为新一代的特殊的生物医用钛合金。本文采用机械合金化和放电等离子烧结技术制备出Ti28Nb2Zr8Sn合金,发现合金具有较高的拉伸强度,但其塑性不佳。随后本文采用组织调控来提
Mn2+掺杂发光材料是指通过引入过渡金属Mn2+作为激活剂产生发光辐射的无机发光材料。锰具有3d~54s~2的电子构型,可表现出多种价态,并易受晶体场影响,表现出优异的光存储、受激发射等发光性能。Mn2+往往表现出不同的发射波段,发光颜色可以从绿色调节到近红外区域。该类发光材料在白光、植物照明以及夜间成像等方面表现出广阔的应用前景。本文基于高温固相法分别合成了Ba Zn OS:Mn2+和Mg F2
氨气作为一种潜在的燃料电池非碳基氢源,近年来在裂解制氢方面受到越来越多的关注。贵金属Ru基催化剂用来裂解氨气制氢虽然价格昂贵,但仍然不可否认其是传统热催化里氨分解制氢活性最高的单金属催化剂。在一些极端环境与低温环境下,其相较于廉价金属,Ru基催化剂仍具有很大的研究价值。介质阻挡放电(DBD)是一种常温常压下产生非平衡态等离子体的有效方法,能有效活化反应空间的粒子。尤其是电子通过电场加速获得很高的能
由于环境的污染,传统的化石燃料已经无法满足人们的能源需求,寻找绿色新型环保能源迫在眉睫。在新能源领域中,氢气被视为最佳能源载体之一。电解水是获得氢气最环保、最快速的手段。阳极发生的析氧反应(OER)在电解水过程中是一个核心反应,但反应中发生四电子转移,动力学反应缓慢,电解水的效率受到约束。Ir、Ru贵金属氧化物是目前析氧反应中活性最高的催化剂。但价格昂贵、地球上含量稀少无法满足大规模的应用。寻找廉
氚增殖包层是聚变堆的关键部件之一,其主要功能是进行氚的增殖和提取,以实现聚变堆氚自持。在聚变堆固态氚增殖包层中,一般采用锂陶瓷球床作为产氚载体。在包层运行时,球床温度可达350℃-800℃,锂陶瓷球床在循环热应力下容易和包层结构钢之间产生作用,不仅直接影响包层的力学性能,也可能引起锂陶瓷颗粒破碎粉化,影响氚的增殖和提取。因此,本文开展球床热机械性能和破碎特性实验研究,为固态包层的设计与发展提供数据
偶氮苯化合物具有标志性的氮-氮双键,可在相应光线的照射下产生光致异构化效应,即从偏平面结构的反式异构体向弯折的顺式异构体转变的过程。由于该效应高度可逆可控的特征优势,使偶氮苯化合物作为一种极重要的光开关分子在化学、生物及多交叉学科中得到了广泛的应用。特别是近十年以来,偶氮苯化合物在光感有机材料制备、诱导控制释放、生物分子互作和大分子光调控等方向均表现出了较大的研究价值。在以脂质体为代表的药物递送平
自上个世纪以来,清洁能源储存这一全球性问题的重要性与日俱增。随着“双碳”目标的提出,化石燃料的使用受到了政府的限制,它们对环境的污染和对全球变暖造成了不可逆的影响。锂离子电池(LIB)在各种应用中都具有广阔的前景,它们可以用于汽车、航空、船舶、太阳能储能、智能家居等领域,为消费者提供更高效、更安全、更可靠的能源。此外,锂离子电池还可以用于支持电力系统的可再生能源,以及支持电力网络的电力负荷管理。因
本文以Ti粉、Si粉、SiC粉、TiB2粉、C粉为原料,采用粉末冶金技术,通过原位自生反应合成了微纳米尺度二元(Ti5Si3+Ti C)和三元(Ti5Si3+Ti C+Ti B)增强钛基复合材料。其中,Ti C和Ti B为微米尺度,Ti5Si3为纳米尺度。通过XRD、OM、SEM、EDX、硬度、压缩测试等表征手段分析了二元和三元增强钛基复合材料的组织和力学性能,主要研究内容及结果如下:首先,研究烧
随着人们对食品安全问题的重视以及对食物本身品质的要求,越来越多的易腐烂水果和肉类会因为较短的货架期而被淘汰浪费。因此通过一种简单高效的主动抗菌保鲜膜来延长其货架期则成为了现在食品保鲜和食品包装领域的研究热点。本文通过选用绿色安全的壳聚糖及其衍生物作为成膜材料,并分别搭配有机抗菌剂单宁酸和无机抗菌剂锌离子,通过自组装方式制备得到主动抗菌包装膜。首先采用静电自组装的方法将MXene和单宁酸引入壳聚糖溶