论文部分内容阅读
在过去的30多年中,有关有毒污染物的研究主要集中在工业化学物质和农药上,关于药品和个人护理用品(Pharmaceuticals and Personal Care Products,PPCPs)对环境污染的研究仅仅有10年多的历史。随着经济的发展及生活质量的不断提高,这类化合物的产量和用量日益增大,种类日趋繁多,结构日趋复杂。PPCPs类污染物的去除已逐渐成为研究的热点。碘化造影剂(Iodinated Contrast Media, ICM)作为典型的PPCPs类物质,在人体内未经新陈代谢而直接排除体外,进入城市污水,而碘化造影剂具有生物惰性和持久性,常规的水处理工艺对碘化造影剂的去除效果甚微,即使臭氧对其的降解率也是有限的,同时考虑到其在地表水中的暴露程度,已经被归类为“最危险的污染物”。因此,找出碘化造影剂的有效去除方法并进行去除机理和能效分析研究,对此类物质去除的理论研究和实际工程应用都具有重要的意义。本研究选择典型的碘化造影剂——碘普罗胺为研究对象,针对水环境中碘普罗胺含量较低的问题,建立了固相萃取-高效液相色谱(SPE-HPLC)的检测方法,优化了检测条件,并采用该方法对实际水样进行了检测。考察了电源输入功率与输出功率间的关系和双介质阻挡放电反应釜的降解性能,研究结果表明:稳定放电时,输入功率与平均输出峰值功率呈线性关系,线性方程为y=0.0595x-0.9379,相关系数r=0.9892;乙酸和柠檬黄的降解研究表明双介质阻挡放电产生·CH等氧化活性粒子的效率较高,可用于难降解物质碘普罗胺的降解。在以上研究的基础上探索了双介质阻挡放电反应釜处理碘普罗胺废水的最佳条件,结果显示:输入功率的提高,反应时间的增加,均有利于碘普罗胺去除率的提高,最佳条件为输入电压50V,电流1.08A,反应时间10min,碘普罗胺去除率达到了100%,TOC去除率较小,但B/C由原来的0.02提高到0.6以上,NO3-最高浓度的增加还不到理论最高浓度的7%,工-浓度为碘普罗胺废水中工-理论最高浓度的89.5%。根据各项指标的检测结果可知,在最佳反应条件下,双介质阻挡放电所产生的等离子体通道分布较均匀,输入等离子体反应体系中的能量被有效用于将碘普罗胺大分子分解为小分子有机物,但未能将其完全矿化,可生化性研究结果和SBR模拟工艺的生物处理结果验证了以上结论,出水水质基本达到了城市污水处理厂的一级A排放标准。本论文还分别采用臭氧工艺、雾化等离子体工艺以及活性炭吸附工艺对碘普罗胺废水进行处理,并将其与双介质阻挡放电反应釜工艺的处理效果进行了对比,研究结果显示:臭氧工艺和雾化等离子体工艺对碘普罗胺有一定的去除效果,去除率分别为32.8%、13.39%,可生化性分别提高到0.3、0.13,但仍有部分碘普罗胺存在。另外,处理后的废水中游离I-浓度偏低,即碘普罗胺降解后仍以有机卤化物的形式存在,这对后续的生物处理有一定的影响。活性炭工艺的研究结果显示:投加量5g/L,吸附192h后,去除率尚不到50%,而一般给水工艺中活性炭过滤阶段的HRT仅为3~4h,且投加量远小于5g/L,也就是说进入水环境中的碘普罗胺在常规给水工艺的活性炭过滤阶段不能被有效去除,有可能再次进入水体,进而污染水源水体。与臭氧工艺、雾化等离子体工艺及活性炭工艺处理碘普罗胺废水的效果相比,DBD反应釜工艺具有工艺简单、反应时间短、去除效果好等优点。通过HPLC.FIRT以及UV等检测结果推测,等离子体反应体系在最佳反应条件下所产生的·OH等氧化活性粒子将碘普罗胺分子中的C-I、C-N以及其他不饱和键等键能较低的化合键断裂,生成小分子极性化合物R;双介质阻挡放电等离子体工艺降解碘普罗胺的反应为一级反应,降解动力学方程为C=C0×e-0.1349t;DBD等离子体间歇式工艺、雾化等离子体工艺的能量利用率分别为1.52×10-10mol/J.6.43×10-10mol/J,上述两种工艺以及臭氧工艺的电能利用率分别为0.42×10-8mol/J、1.43×10-8mol/J.1.92×10-8mol/J,但从可生化性的提高值与所耗能量的比值比较,则DBD等离子体工艺的能量利用率和电能利用率分别为6.6×10-7/J、3.1×10-5/J,而雾化等离子工艺的能量利用率只有9.7×10-9/J,臭氧工艺的电能利用率只有5.6×10-7/J,所以单从废水中碘普罗胺去处方面考察和比较,DBD等离子体工艺的能量利用率和电能利用率低于雾化等离子体工艺和臭氧工艺,但结合处理后废水的可生化性考察并比较,DBD等离子体工艺的能量利用率和电能利用率要高于雾化等离子体工艺和臭氧工艺的。