【摘 要】
:
在新兴物联网应用的驱动下,越来越多的设备接入物联网,大量数据涌入数据融合中心等待处理,而数据的保真度和时效性就显得至关重要。作为物联网中典型的数据驱动应用,无线传感器网络由多个在空间上分布的传感器和数据融合中心组成。传感器负责采集数据,数据融合中心负责处理数据并将数据交付给使用者。在该网络中,同时追求新鲜度和保真度成为了一大挑战。事实上,无线传感器网络的部署方式发挥着不可小觑的作用,恰当的部署方式
论文部分内容阅读
在新兴物联网应用的驱动下,越来越多的设备接入物联网,大量数据涌入数据融合中心等待处理,而数据的保真度和时效性就显得至关重要。作为物联网中典型的数据驱动应用,无线传感器网络由多个在空间上分布的传感器和数据融合中心组成。传感器负责采集数据,数据融合中心负责处理数据并将数据交付给使用者。在该网络中,同时追求新鲜度和保真度成为了一大挑战。事实上,无线传感器网络的部署方式发挥着不可小觑的作用,恰当的部署方式将为系统的良好性能奠定基础。在网络中部署更多的传感器节点时,数据融合中心收到的样本越丰富,以便更精准地恢复所观察的信号。但与此同时,累计样本所需的样本汇集时延开销会增大,导致恢复的数据不再新鲜。注意到系统精确性和新鲜度随着部署传感器节点个数变化的对立关系,本文运用均方误差和信息年龄作为无线传感器网络保真度和新鲜度的性能指标,分别针对采用率失真编码方案和选择合并方案的场景进行最佳网络部署方式的讨论。首先,面向采用率失真编码方案的场景,建立无线传感器网络模型。分别推导出系统的均方误差失真和平均年龄的闭式表达式,建立一个通过调整传感器节点个数而最优化系统耦合保真度与新鲜度的目标问题。通过对耦合目标函数进行导数分析以及恰当的近似与转化,得到了最佳传感器布置个数的闭式近似解。而后利用迭代算法进一步修正近似所带来的误差。此外,提出数据融合中心只等待部分传感器样本的策略,从而进一步提高系统性能,并揭示了最佳部分等待传感器数目与总节点个数平方根的线性关系。仿真结果表明了所提出的闭式近似解和算法解的准确性,及其优化系统全局新鲜度和保真度的有效性。其次,面向采用选择合并方案的场景,建立信号传输模型。在该传输制式下,推导出最小均方误差和平均信息年龄的闭式表达式,并引入加权因子建立一个耦合性能优化问题。针对目标函数通过倒数分析、逼近和放缩的方法得到了最佳传感器数目的闭式解。紧接着,考虑数据融合中心只等待部分传感器的数据融合方式,以提升系统全局保真度与时效性。仿真结果验证了闭式解的准确性,以及等待部分传感器样本策略在优化系统新鲜度和保真度方面的优越性。综上,本文提出的网络感知节点部署策略能够同时优化系统保真度和新鲜度,保证数据在系统中又准又快传输,对无线传感器网络的部署和设计具有指导意义。
其他文献
传统建筑业安全风险防控主要采用基于人工巡检的“人防”手段,存在不可回溯、可靠性差、人力成本高等问题。基于视频监控的“物防”手段在一定程度上可提升风险防控能力,但无法实现实时的风险要素识别和预警。随着人工智能技术的快速发展,基于智能化目标识别技术的智慧工地“技防”手段成为大势所趋。论文结合建筑工地环境复杂多变的实际情况,研究部署便捷、支持风险要素目标实时识别的轻量级目标检测算法和实现智慧工地风险监测
情绪是一种能够表达人的思想、感觉等的综合状态,在人们的交流中有着举足轻重的作用。尤其在人-机交互的研究中,若能准确识别情绪,人-机交互的应用就会更加智能且自然。研究发现,情绪识别的研究综合了认知心理学、计算机视觉、人工智能和脑科学等领域,现已成为一项重要的交叉学科研究课题。如何准确和快速地识别出情绪,一直是该交叉学科领域研究的关键科学问题。目前较成熟的情绪识别算法中,ESRs算法能有效减少剩余泛化
压缩感知理论不再约束于奈奎斯特-香农采样定理对采样频率的要求,其将采样过程和压缩过程进行有机结合,为如何进行有效的信号采样、传输和存储提供了新的模式,将压缩感知应用于图像处理领域,能够减少采样数据量且避免高速采样。从极少量的测量值中有效且高概率高质量恢复出原始信号是压缩感知图像重建研究的核心问题,学者们相继提出了传统和基于深度学习的压缩感知图像重建算法,传统算法基于数学推导是可解释的,但其重建质量
行人重识别技术旨在通过对多摄像头拍下的行人目标进行身份一致性匹配,从而实现对跨摄像头下行人运动轨迹的准确追踪,目前被广泛应用于安全监控、道路交通、智慧校园等领域。面对大量的监控数据时,使用行人重识别技术进行智能识别,可以实现更快、更高效的信息处理和信息分享,提高生活智能化水平,对维护社会稳定安全都具有重要的意义。由于摄像机获取的行人数据集存在光照变化、复杂背景、姿势差异和遮挡等问题,目前的方法往往
随着车辆正在向智能化、网联化演进,行车安全预警作为车辆重要的智能应用之一,受到学术界的广泛关注,有效的行车安全预警能够极大程度提高交通安全,提升驾驶体验。行车安全预警策略一般基于实时道路交通流特性以及本车行驶特性进行建立,如果能够及时发现行车过程中的潜在行车风险,并以之为依据,生成行之有效的行车策略,则能够防患于未然;因此,行车潜在风险的评价方法已经成为学术界的关注重点。本文从VTTI100car
无人机(Unmanned Aerial Vehicle,UAV)作为一种新兴装备,具有灵活部署和易于控制等特点。将UAV应用于现代移动通信网络,从而扩大网络覆盖范围或构建UAV集群网络,已成为无线通信领域研究热点之一。与此同时,伴随着Alpha Go的成功,作为强化学习(Reinforcement Learning,RL)重要分支的多智能体强化学习(Multi-agent RL,MARL),由于能
在高肥胖率和人口老龄化的趋势下,心血管疾病等慢性病发生率越来越高。对血氧饱和度和心率等关键生命指标进行持续可靠的监测,对于预防慢性病来说变得非常重要。基于光电容积脉搏波描记法(Photoplethysmography,PPG)的检测方法广泛用于无创、连续、实时的人体血氧饱和度、心率、血压等生命体征参数监测,为临床医疗检测和便携式医疗设备提供了重要的技术方案。本文研究和设计了一种用于脉搏波信号检测的
智能监控系统中的视频异常检测技术旨在自主检测出监控画面中的异常事件,有利于维护社会公共安全,具有较高的学术价值和工业价值,也是当前计算机视觉领域的研究热点之一。影响视频异常检测算法精度的主要因素包含事件的时空特征学习和异常评估两个部分,本文将从这两个方面着手研究,以实现事件的完备描述,增强异常事件的可分辨性,进而提高异常检测精度,主要内容包括:(1)针对基于深度学习的帧重构模型泛化能力过强而无法保
随着下一代网络多媒体化发展,业务呈现出爆炸式增长特性,仅凭现有地面网络架构与物理层技术难以产生真正的通信技术变革以满足日益增加的网络业务承载,且地面网络弱覆盖以及系统高能耗等问题亟待解决。本文从6G网络实现泛在连接和高能效两大目标出发,构建了兼具穿透和反射的可重构智能表面(STAR-RIS)辅助的空天地一体化网络架构,其中STAR-RIS能进一步扩展空天地一体化网络服务范围,从而满足山地等复杂场景
在万物互联的时代,无线通信技术的高速发展极大地方便了人们的工作与生活。但受限于地理等因素,现有的地面网络仍无法满足全球日益增长的通信需求,由此卫星通信技术开始受到业内人士的青睐。然而,卫星波束宽广的覆盖范围和无线电信号的广播特性使得卫星系统更容易受到不法分子的恶意攻击。考虑到无线环境的高度开放性与计算机运算能力的不断提升,仅依靠加密手段可能不足以保证无线通信系统的安全。因此论文围绕星地通信网络中的