论文部分内容阅读
平台定位与目标跟踪是景象匹配技术在实际中的两类重要应用,在军事和民用上都具有重大应用价值。本论文研究了大倾角成像条件下提高平台定位与目标跟踪精度的方法。首先从作为基础的匹配技术出发,研究了适应几何畸变的相似性度量及匹配结果置信度估计方法以提高匹配性能,然后将其应用于大倾角成像条件下平台定位与目标跟踪中。主要内容如下:(1)针对模板匹配中,传统相似性度量在图像几何畸变条件下无法适用的问题,提出了几何畸变自适应的相似性度量。利用图像中双向匹配点对图像间的相似变换参数投票,以最高票数作为两幅图像之间的相似性度量。然后利用投票位置查找表和并行加速的策略提高匹配时间性能。使用区间投票的手段,使得该相似性度量对仿射变换甚至透视变换也具有一定的适应能力。实验结果表明,利用该度量进行模板匹配,可以有效降低图像间几何畸变影响,提高了模板匹配性能。(2)针对景象匹配应用中衡量匹配结果可信程度的需求,提出了一种融合实时图与相关曲面特征的匹配置信度估计方法。以理论方法估计的置信度、实时图统计特征以及相关曲面特征量构成特征向量,使用随机森林进行决策分类,以支持匹配正确的决策树所占比率作为匹配结果置信度。提出了相关曲面多峰系数,描述相关曲面中与匹配结果相似的区域中所占比率,以此来表征基准图中重复模式的影响。使用大量仿真图像进行了匹配和置信度估计,结果表明,利用本方法计算的匹配置信度对匹配结果正确与否进行分类,性能比直接使用相关值和理论估计值有明显提升。(3)针对SAR/惯性组合导航中,特别是大倾角成像条件下,对平台高精度定位的需求,提出了一种结合大倾角SAR图像匹配和惯导信息的平台定位方法。利用SAR图像进行高精度景象匹配,并结合高程数据估计各成像时刻平台位置,再用序列时刻的估计位置对惯导数据进行修正,有效提高了SAR平台位置精度。根据误差传递关系,对各误差因素的影响进行了分析,推导了平台定位精度估计公式。大量仿真实验结果表明本方法可行,误差分析正确。实际挂飞序列图像验证实验结果表明所提出方法能够有效补偿惯导系统的漂移误差,可以实现高精度的SAR平台定位。(4)针对复杂立体场景大倾角绕飞观测条件下,对点目标高精度跟踪的需求,提出了一种基于特征点匹配与扩展卡尔曼滤波的目标跟踪方法。利用图像中辅助特征点估计相机相对运动轨迹,获得目标在图像中的投影位置,以提高跟踪效率。特别针对大倾角、小视场角成像条件,提出使用弱透视成像模型对各特征点位置进行初始化,以相对姿态角作为输入提高跟踪稳定性,并使用辅助特征点协助目标空间位置更新的策略减小目标在匹配错误时利用图像投影位置作为跟踪结果的误差。仿真实验表明,使用上述改善方法,可以有效提高目标在图像中投影位置的精度,保证目标跟踪性能。实际序列图像跟踪结果显示本方法可以实现绕飞条件下的目标跟踪,并在目标出视场或者被遮挡的情况下保持良好预测性能,实现目标再捕获。在后续工作中,还需进一步研究提高平台定位和目标跟踪实时性能的方法与技术。