论文部分内容阅读
在结构的设计和风险分析中,需要考虑与尺寸、荷载、材料性能等有关的各种不确定性的影响,可靠性分析是考虑这些不确定性的一种非常有效的技术,其主要任务是获得结构的失效概率。在可靠性分析的各种数值方法中,一阶可靠度法(FORM)是结构可靠性界非常流行的方法。然而,在求解具有高度非线性极限状态函数的高维问题时,一阶可靠度法通常会遇到不收敛或发散的情况。这一困难限制了一阶可靠度法在工程和复杂问题中的进一步应用。针对高非线性和高维可靠性分析问题,提出了四种基于不同群智能优化算法来改善一阶可靠度法的性能,并在复杂工程结构中进行了应用。本文主要工作如下:(1)提出了一种结合樽海鞘群算法(SSA)和一阶可靠度法的可靠性分析混合方法。SSA算法受深海樽海鞘群体食物搜索行为的启发,能够在优化问题中找到全局解。在所提出的SSA-FORM方法中,利用外部惩罚函数法来处理约束条件,以方便元启发式优化策略。然后,利用具有较强全局寻优能力的SSA算法寻找全局最优可靠指标。使用了8个算例对SSA-FORM方法进行了验证,并比较了多种基于梯度和基于启发式的改进一阶可靠度法。结果表明,所提出的SSA-FORM在非线性问题上有良好的性能。(2)提出了一种结合栗翅鹰优化(HHO)的改进一阶可靠度法用于高维问题的可靠度分析。HHO是一种模仿栗翅鹰捕食行为的元启发式算法,能有效地求解高维问题的全局最优解。为了实现所提出的HHO-FORM算法,首先根据形式理论将可靠性指标表示为约束优化问题的解。然后,利用外部罚函数法对约束条件进行处理。此外,最优可靠性指标由栗翅鹰优化算法确定,该优化通过基于种群的机制和莱维飞行策略加速收敛。HHO-FORM不需要极限状态函数的导数,从而减少了高维问题的计算负担。因此,HHO-FORM的简单性大大提高了求解高维可靠性问题的效率。将HHO-FORM应用于多个高维数值问题,并将其应用于一个高维框架结构可靠度分析。并将几种FORM算法与HHO-FORM进行了比较。实验结果表明,HHO-FORM算法在所测试的高维问题上有着良好的性能。(3)提出了一种基于教学优化的改进一阶可靠度法(TLBO-FORM)。TLBO的灵感源于课堂内教师学生的学习行为,以提高学习成绩作为优化目标。TLBO-FORM算法利用一阶可靠度理论将可靠性指标表示为一个约束优化问题的解。然后,采用外部罚函数法对优化问题进行约束处理。之后,采用TLBO的教师和学习两阶段策略,通过迭代过程寻找全局最优可靠指标。另外,还发展了多个版本的混沌TLBO-FORM方法。通过19个可靠度算例对所提算法进行测试,验证了所提方法的准确性和有效性,充分说明了TLBO-FORM能够在不同类型和各维度问题上的适用性。另外,通过参数讨论,说明了TLBO-FORM比HHO-FORM有着更好适应性的原因。(4)提出了采用平衡优化算法(EO)来改进一阶可靠度法进行结构可靠度分析。EO的灵感来源于用于评估动态和平衡状态的控制体积-质量平衡模型。为了实现EO-FORM算法,将可靠性指标表示为一个约束优化问题的解,而约束则由外部罚函数法处理,然后利用EO算法搜索全局可靠性指标。通过多个数值和工程算例对所提出的EO-FORM进行了验证,结果表明EO-FORM在各类问题中具有良好的精度和效率。最后给出了四种改进FORM方法求解不同类型可靠度问题的使用建议。(5)研究了大型复杂工程结构的可靠度分析,三个工程结构分别为布洛溪大桥、测地线空间网架穹顶结构、三维岩质边坡,并测试了第二章至第五章所提的SSA-FORM、HHO-FORM、TLBO-FORM、EO-FORM方法的性能,且分别设置了不同大小的算法参数进行性能对比。在布洛溪大桥结构可靠度分析中,TLBO-FORM在算法参数较小的时候性能最佳,EO-FORM则在算法参数较大时性能最佳。在测地线空间网架穹顶结构可靠度分析中,EO-FORM和SSA-FORM表现最好。在三维岩质边坡可靠度分析中,TLBO-FORM的性能最好,EO-FORM在算法参数较大时全局收敛性较好。结果表明,本论文所提方法可用于复杂工程结构可靠度分析中。(6)研究了新型带暗支撑组合核心筒结构的可靠度分析。首先基于编号为CW3X-1的核心筒低周往复实验结果,采用Open SEES软件对组合核心筒结构进行有限元分析。然后,考虑各种因素(荷载、混凝土与钢筋材料性能)的变异性和不确定性,计算新型核心筒结构的可靠指标,评估结构安全性能,并讨论了在不同轴压比、高宽比、连梁跨高比、墙肢钢板暗支撑含钢率、加载方式等因素对可靠指标和失效概率的影响。之后,采用本文所提智能优化FORM方法,评估了随机变量对可靠指标的参数敏感性。