【摘 要】
:
固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)系统是一种使用燃料来发电的装置,具有低排放、高效率、长寿命的优点。然而,振荡的发生和传播在系统中是很常见的。当某些变量振荡时,发电系统的寿命会大大缩短,并且会影响系统的输出电特性。因此,为了防止振荡对系统造成不良影响,SOFC系统振荡根因分析、诊断和控制是非常重要的。一个独立的SOFC系统由多个子系统组成,每个子系统均包含多
论文部分内容阅读
固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)系统是一种使用燃料来发电的装置,具有低排放、高效率、长寿命的优点。然而,振荡的发生和传播在系统中是很常见的。当某些变量振荡时,发电系统的寿命会大大缩短,并且会影响系统的输出电特性。因此,为了防止振荡对系统造成不良影响,SOFC系统振荡根因分析、诊断和控制是非常重要的。一个独立的SOFC系统由多个子系统组成,每个子系统均包含多个过程变量。准确定位系统振荡的根因并不容易,且目前针对SOFC系统的振荡根因控制策略的研究也很少。针对SOFC系统实验过程中出现的变量振荡问题,本文采用数据驱动和拓扑模型相结合的办法,为诊断系统中的振荡提供了完整的流程。面对诊断出的振荡根因,本文搭建了实验系统模型,并模拟振荡情形,制定了振荡控制策略。首先本文搭建了3k W SOFC独立发电系统,启动了升温发电实验,包括启停、待机和长期放电阶段。通过实验发现SOFC系统中的众多变量都存在着振荡问题。针对实验对象,对SOFC系统中各个子系统进行了建模和集成,搭建了SOFC系统物理模型,并通过实验数据对模型进行了验证。进一步,基于实验得到的众多数据,采用结合主成分分析和振荡显著性指标的方法来选择系统中的特征变量。然后应用数据驱动的格兰杰因果关系分析方法来提供可靠的振荡根因诊断,并且通过考虑了过程连接性和过程知识的拓扑模型进一步提高了诊断结果的准确性。结果表明,基于数据和拓扑模型相结合的方法可以准确定位SOFC系统振荡的根因,为提高分析和诊断系统振荡根因的准确性提供有力的保障。最后,基于得到的振荡根因,在模型中对振荡源进行了模拟,并进一步分别设计了单输入和双输入模糊控制器对系统中的振荡问题进行控制和消除,从而优化了SOFC系统因振荡问题导致的寿命衰减和发电不稳定的问题。
其他文献
非小细胞肺癌(Non-small-cell lung cancer,NSCLC)是一种最常见的肺癌类型,具有高发病率与死亡率的特点。准确地预测NSCLC癌患者的生存期与分子亚型可以为临床医生制定个性化治疗方案提供指导,对改善患者预后、提高长期生存率具有重要意义。随着高通量技术的迅速发展,NSCLC患者的临床与多组学数据被大量收集,为开展广泛的预测研究提供基础。已有研究表明融合临床与多组学数据对NS
随着自动化、智能化逐渐普及以及计算平台性能的提高和成本的降低,机器视觉技术在路面等自然场景中有了更多的应用。目前目标检测框架大多使用端对端的深度神经网络结构,需要进行大量的卷积操作,极其依赖GPU硬件的算力,成本较高,且需要大量训练集训练来保证检出效果。本文设计了一个用于垃圾清扫车上的车载垃圾识别算法,用来辅助垃圾清扫车完成垃圾清扫任务。通过车载相机拍摄路面图片,检测出路面中的垃圾目标,根据垃圾种
近几十年来计算机视觉技术飞速发展,自动目标识别技术在民用军用中的作用也日益突出,在行人检测、智能驾驶、无人机作战等实际场景中均得到了广泛应用。随着自动目标识别技术的发展,如何综合地评价基于不同模型的目标识别算法的性能,是实际应用中十分重要的问题。本文针对自动目标识别算法的性能评价问题,以一些目前主流的自动目标识别算法为对象,设计了一套性能评价指标体系,并提出了一种性能评价方法,对目标识别算法在行人
形状匹配问题是形状识别、形状检索、形状模型重建等关键技术的研究基础,主要可分为刚性形状匹配与非刚性形状匹配。其中,非刚性形状匹配问题由于受到复杂变形因素的影响,实现匹配难度更大,也更具有挑战性。传统的非刚性形状匹配算法,大多基于手工设计的特征描述子,通过特征之间的相似性度量来实现。然而在形状拉伸、扭曲、等距变形等复杂变换影响下,手工设计特征往往存在区分性差、鲁棒性低等问题。近年来,深度神经网络由于
<正>2020年初,新冠肺炎疫情爆发,对全球民航业带来前所未有的巨大冲击,必将深刻影响未来发展格局。现就疫情之后全球航空业的发展情况进行分析。全球航空业发展基本特性特性1:从历史数据来看,全球民航市场发展与经济社会发展速度、发展质量紧密相关,平均年增长率约为全球GDP平均年增长率的2倍或以上,在经济稳定发展时期民航增长也保持稳定态势,但经济波动时民航的波动幅度远大于经济波动(如图1),堪称经济的"
目标检测是计算机视觉研究领域的一个基础课题,在自动驾驶,工业制造以及医疗等应用领域也有重要的应用价值。其中,目标的定位精度不仅仅是衡量目标检测的重要指标,对其应用也有显著的影响。本文以经典的Faster R-CNN为例,从样本分配、网络结构以及损失函数三个角度出发对模型进行分析和改进,以提升模型的定位精度。主要研究工作简述如下:(1)提出了基于动态样本分配的目标检测算法。原始的目标检测算法通常是基
锂电池因具有高功率密度、无记忆效应、使用寿命长等优点,在军事、交通、电站等领域具有广阔的应用前景。为了满足实际使用中不同的功率需求,通常将单体电池进行串并联连接形成电池组。对电池组中发生异常衰减电池进行定位处理,是保障储能系统高性能安全输出、避免故障甚至危险的关键。为此,本文针对电池组中异常衰减电池从识别定位、状态估计和维护决策三方面展开深入研究,旨在系统性地解决电池组中异常电池的精确定位、估计和
多视图数据是指对同一物体从不同视角进行描述的多个特征子集。充分挖掘视图间的一致性和互补性信息,对来源不同的特征子集加以融合进而做出更合理的决策是多视图学习的主要目标。典型相关性分析(CCA)是多视图学习中的重要方法,旨在为各视图寻找一个公共子空间以最大化视图间的相关性。传统的CCA方法只能处理两个视图的线性关系,无法应用于包含多个视图的、非线性的数据集。如果将CCA作为一种降维方法应用到分类、回归
神经接口能够提供神经系统与外部设备之间的信息交流通道,是一种在恢复瘫痪病人感觉和运动功能方面具有巨大潜力的新兴技术。其中,植入式脑机接口是当前最前沿的交叉研究领域之一,有许多问题亟待解决。在神经信号编解码方面,由于神经信号具有非平稳特性,不同时段的神经信号数据存在统计分布差异,经由历史数据训练的解码器往往不能准确解码当前数据,因此脑机接口用户需要采集大量新样本用于解码器的重校准,这为用户带来沉重负
宫颈癌是常见妇科恶性肿瘤之一,对其进行定期筛查并及时治疗能有效降低女性因患宫颈癌的死亡率。宫颈细胞学筛查方法需要病理医生从宫颈脱落细胞涂片上的数十万细胞中筛选出异常细胞并做出宫颈病变程度的诊断。随着阅片量增加,人工阅片方法容易因为医生视觉疲劳造成误诊。宫颈癌细胞自动检测方法能够辅助医生诊断,提高阅片效率和准确度。现有的宫颈癌细胞检测算法在如何挖掘阴性图片中的难负样本,如何采样更具代表性的候选框样本