论文部分内容阅读
先进电子技术对电子设备的性能要求日益增长,传统的电子设备设计方法已不能够满足当前电子设备中的高密度、高性能、高可靠性的要求。为了从整体性能上设计最优电子设备,除了保证主要电参数性能之外,还需要对散热、振动等可靠性进行分析,即充分考虑电子设备的结构位移场、温度场、电磁场、流场等。结构位移场在电子设备的性能分析中起着至关重要的作用,一方面结构的可靠性和稳定性在电子设备的设计中很重要,为了设计高可靠性和稳定性的电子设备,有必要了解它们在当前设计中的不稳定性;另一方面,在外部载荷作用下,电子设备关键结构会产生变形,导致电磁场的边界条件改变,进而影响电性能的实现。采用仿真技术对电子设备结构可靠性和位移场进行预先分析,是一种经济而有效的手段。因此,需要开发用于电子设备的CAD/CAE集成的动力学分析快速设计系统。本文开发了一款用于电子设备动力学分析的软件-MCS,为电子设备结构可靠性和位移场的预先分析提供了有效的仿真工具。论文以CAD/CAE集成设计环境技术、准确快速的振动分析求解技术、精确高效的流场求解技术、流固耦合技术为重点研究内容,主要工作包括以下几个方面:1、开发了基于有限元方法的三维动力学分析仿真软件。该软件采用C++编程实现,包含实体建模、网格划分、动力学模拟器、后处理四大模块。其中实体建模支持快速建模和参数化建模。网格划分支持四面体网格、曲网格、边界层网格、混合网格等,且具有局部加密功能。动力学模拟器包括自由振动分析,随机振动分析,流场分析以及用于辅助流场分析的静力分析模块。后处理模块具有三维场、二维表面场以及曲线显示功能。利用该软件可实现电子设备结构可靠性和位移场的预先分析。2、开发了具有统一数据架构的CAD/CAE集成振动分析快速重设计系统。该系统可以缩短设计-分析-重设计过程的周期。在此设计系统中,设计人员可以同时、快速、自由地完成组件设计和性能分析,而无需使用两个不同的软件或两个界面环境。数值实验结果表明,在保证计算精度的同时,MCS软件的分析设计效率要高于商业软件。3、提出了一种改进的隐式重启Lanczos迭代方法用于自由振动分析,并结合虚拟激励法实现了随机振动分析。改进的隐式重启Lanczos迭代方法通过引入频谱变换把低频段的固有频率求解问题转换到高频段的迭代求解。而且该方法只需在Lanczos迭代之前构造一次预处理子。虚拟激励法被应用于基于振型叠加法的随机振动分析,提高了振动分析的效率。数值实验结果表明本文提出的方法在计算性能上全面超越了传统Lanczos迭代方法,而且在性能上也要优于商业软件ANSYS。4、建立了基于三层预处理子的大型线性系统的快速求解技术。根据多层预处理子的概念,提出了用于PCG方法的三层预处理子。该预处理子包括基于高阶叠层基函数的p型多重网格预处理子,基于处理病态稀疏线性系统的MFBIC预处理子以及基于位移三个方向分量的块雅克比预处理子。数值实验结果表明本文提出的快速求解技术具有与基本方法以及商业软件相当的精度,并且在求解性能上有着明显的优势,包括计算时间和内存需求。5、建立了基于曲网格的流场分析DG方法和流固耦合分析方法。首先对流场基本方程和DG方法进行了简单的阐述。然后研究了从真实的曲单元到标准参考单元的几何变换。基于逆变速度提出了固壁边界条件和HLLC通量格式在曲单元中的通用实现方法,该技术不需要复杂的几何边界信息,并且易于实现。数值实验结果表明曲网格DG方法可以在适当粗的非结构化网格上获得合理的精度。最后结合静力学分析初步实现了流固耦合分析。6、提出了高效率曲网格DG方法。首先基于凸出和凹陷曲单元与直单元之间的几何关系,利用数值解的光滑性提出了一种无需曲单元体积分的曲网格DG方法。然后基于物面法向量以及表面法向量的Jacobian关系,提出了改进的曲网格DG方法。在该方法中,不仅避免了任何曲单元上的体积分,而且不需要沿曲面边界的面积分。数值实验结果表明改进的曲网格DG方法具有和普通曲网格DG方法相当的高阶精度。