【摘 要】
:
表面形貌是评价物体表面质量的重要因素,表面粗糙度是表现表面形貌的重要参数,表面粗糙度的检测广泛用于工业零部件的加工制造过程中。现有粗糙度测量方法主要有纳米表面粗糙度分析法、触针式测量法和白光干涉法等,但存在测量环境要求高或者易划伤物体表面等缺陷。共聚焦显微成像粗糙度测量法能够测量表面局部斜率较高的零件,且属于非接触式测量法,在高精度零件表面质量评价中有重要应用。本文研究了基于共聚焦成像的表面形貌测
论文部分内容阅读
表面形貌是评价物体表面质量的重要因素,表面粗糙度是表现表面形貌的重要参数,表面粗糙度的检测广泛用于工业零部件的加工制造过程中。现有粗糙度测量方法主要有纳米表面粗糙度分析法、触针式测量法和白光干涉法等,但存在测量环境要求高或者易划伤物体表面等缺陷。共聚焦显微成像粗糙度测量法能够测量表面局部斜率较高的零件,且属于非接触式测量法,在高精度零件表面质量评价中有重要应用。本文研究了基于共聚焦成像的表面形貌测量技术,以期为研制国产表面测量共聚焦显微镜提供理论指导。主要内容如下:(1)针对共聚焦显微成像技术,分析其成像原理和扫描方式,并对其三维层析能力进行深入探究,用Ra=1.6μm的刨床样本进行共聚焦成像,验证了共聚焦三维层析能力。在此基础上提出了三维重建算法,将共聚焦成像系统拍摄得到的序列图片进行三维重建,恢复了物体的轮廓;并对Mitutoyo 178-601高精度粗糙度样本和标定高度差的透明样本进行实验,对三维重建算法进行定性和定量验证,实验中重建出的透明样本高度差与标称值平均相对误差为3.11%,验证了三维重建算法的可行性,为下一步绘制粗糙度轮廓做了准备。(2)物体的表面形貌含有多种轮廓成分,包括粗糙度轮廓、波纹度轮廓和形状轮廓。为了从原始轮廓中提取出粗糙度轮廓,对滤波器的种类和功能进行分析,建立了高斯滤波提取粗糙度轮廓的数学模型,探究了数学模型中截止波长的选取方法。计算仿真表明,该粗糙度轮廓提取模型可以成功提取出物体的粗糙度轮廓。(3)由于高斯滤波器的边界效应,得到的粗糙度轮廓左右两端各丢失了一段数据,需要采用修正边界区域算法对边界区域进行修正。为适应整体轮廓陡峭程度不同的表面,提出了一种普适修正边界区域算法。仿真表明普适修正边界区域算法对陡峭轮廓有较好修正效果。对于整体轮廓较为平缓的物体,实验表明常规的边界轮廓延伸法与边界区域修正法的效果相近。而对于整体较为陡峭的物体,常规的边界轮廓延伸法与边界区域修正算法的相对误差分别为0.31%和3.48%,表明本文的边界区域算法对各种轮廓有较好的适应性。(4)为了验证本文提出的基于共聚焦成像的表面测量技术,对16个实验样本用共聚焦成像系统进行成像,计算出各样本的粗糙度参数Ra值,并与基恩士公司VHX-6000超景深显微测量系统测得的值进行了比较,两者的平均相对误差值均在5%以内,表明本文基于共聚焦成像的表面测量技术具有较高的准确度。(5)编写了表面粗糙度测量软件,成功实现了导入共聚焦序列图片,可得到样本的全焦图和三维轮廓图,以及指定直线区域的二维轮廓和粗糙度参数Ra值,可用于指导表面测量共聚焦显微镜的研制。
其他文献
场景图生成任务是指从图像中检测目标类别和推理目标间关系,并利用图结构来简洁且结构化地描述图像。它是沟通自然语言与计算机视觉的桥梁,近年来成为图像理解领域的热门研究方向。深度学习也已成为图像理解的有力工具。然而现有的场景图生成方法仍然存在两个问题。问题一是现有的场景图生成方法推理得到的关系多样性较差。一方面,特征不完善会导致关系多样性受限。现有方法单纯利用视觉特征进行类别推理,相似关系之间的差异性较
脑机接口(Brain Computer Interface,BCI)作为一种新型信息沟通控制手段,是一个涉及神经科学、信号处理以及模式识别等多个学科的交叉研究课题。基于运动想象的BCI系统被认为是最具有发展前景的一种脑机接口系统。针对基于机器学习方法构建脑电特征与运动想象之间映射关系进行分类时,现有方法仍存在着无法兼顾脑电信号的时-空域特征,并且分类精度难以提高的问题,本文开展基于注意力机制的双向
皮肤触觉感受器因接受机械刺激而产生的感觉,称为触觉。通过仿生触觉传感器,机器人也能捕捉因相互接触而产生的物理交互信息。本文面向现代机器人触觉感知的实际应用,针对目前多传感融合所面临的实际问题,依据现代稀疏编码相关理论和最新研究进展,进行理论和实验研究,实现多传感信息互补以提升机器人对环境的感知能力。本文的主要研究工作如下:首先,针对稀疏联合组套索模型的优化求解问题,本文构造了一种基于近端梯度下降法
行人重识别是视频监控工作中的一项重要任务,在相机无法获得高质量的人脸图像时,利用身体特征、步态动作等更为全面的信息继续识别目标,无论是单独使用还是与人脸识别技术相结合,都能发挥重要的作用,在计算机视觉领域有重要的学术研究意义。目前,基于单帧图像的行人重识别研究已经获得很大的进展,但图像的信息有限并对图像质量有较大的要求。考虑到基于视频的行人重识别方法不仅关注单帧图像的信息,还能够利用帧与帧之间的时
遥操作机器人可以代替人手代替操作者去执行危险任务,并且操作者可以通过力反馈设备感知到远端环境与从端机器人的交互力从而判断从端机器人情况。但是由于通信时延的存在以及系统中有力反馈设备的参与,这将破坏遥操作机器人的系统稳定性。因此,本文提出一种基于加幂积分算法的有限时间控制器,结合有限时间收敛的干扰观测器的控制策略来提高带有力反馈的遥操作系统的稳定性、快速性、精确性以及鲁棒性,使得带有力反馈的遥操作系
财务管理是事业单位管理工作的重心,直接影响单位运营效率和质量。但在大数据时代背景下,事业单位财务管理信息化建设存在着认知不足、系统兼容性不强及安全性能不够等问题,已无法适应时代发展要求,因此运用大数据技术,推动事业单位财务管理信息化建设,顺应时代发展要求有其现实意义。文章提出了奠定事业单位财务管理信息化建设的环境基础、搭建功能模块集成化系统、建立线上报销平台及搭建基于内联网的安全保障机制等措施,推
卷积神经网络作为深度学习领域被广泛使用的模型,其在计算机视觉的诸多领域有着较好的应用与研究。作为具有很高研究热点的计算机视觉领域包括图像识别、目标检测、语义分割等模块,且这些模块的研究也取得了很好的进展,同时,结合人工智能技术在医疗领域的应用也在蓬勃发展。为了应用这些已取得较好效果的深度学习模型并在医疗领域展现人工智能技术的强大作用,本文提出了基于卷积神经网络的面部表情识别模型、基于卷积神经网络和
高分辨率卫星幅宽有限,涉及大区域的对地观测应用通常需要对多张高分辨率图像进行镶嵌。由于拍摄时间不同,这些参与镶嵌的图像通常具有明显的颜色差异,因此要进行图像匀色,以避免过渡区域内明显的接缝线和重影。当前的遥感图像镶嵌技术在消除图像之间色彩差异问题上,已经能够得到很高的视觉上的连续性。但是无法保持镶嵌后数据的辐射准确性,也就无法应用于定量遥感应用和遥感解译。本文以遥感图像镶嵌任务中的图像匀色技术为切
在碳达峰、碳中和的“双碳”目标引领下,推动能源行业从高碳向低碳转型,从以化石能源为主向以清洁能源为主转变,已成为不可阻挡的历史潮流。然而,受内需拉动和国际贸易复苏等多种因素影响,江苏能源供应的紧张形势不断凸显。破解这一突出矛盾和问题,需要着力解决三个重点问题:一是明确传统能源的“压舱石”作用,协调新能源快速发展与能源增长需求、电网调峰需求之间的矛盾;二是明确省属能源企业主力军责任,引导传统能
裸眼3D技术的产业化应用为3D摄像机和3D照相机提供了图像监控措施,从而促进了3D拍摄技术的发展。裸眼3D技术与3D拍摄技术构成了相互配合、相互促进、相互成就的紧密关系。3D拍摄技术获得的3D视频是3D电影、3D电视等3D场景的重要载体,对3D显示设备的产业化研究具有重要意义。本文以3D拍摄过程中涉及的视频处理技术为背景,设计了一种基于3D图像传感器的3D视频采集、处理和显示的系统。3D图像传感器