论文部分内容阅读
我国现行森林资源监测体系虽然满足了森林资源调查的基本要求,但是存在着调查结果共享性差,调查费用偏高,年度监测欠缺,森林健康监测不足等方面的欠缺。作为林业发达国家,美国的森林资源清查体系为解决这一现状提供了解决思路和参考意义。本研究参照美国FIA(Forest Inventory and Ana]ysis)的三阶抽样体系,以北京市延庆区为研究区域,以森林面积和蓄积量为研究对象,设计不同的抽样方案进行森林资源抽样调查和对比。最终得到以下结论:(1)第一阶段抽样层面上,在研究区域内系统布设不同边长的正六边形抽样网格作为抽样框架,通过分析变动系数确定最优的六边形抽样框架,最终确定了最优正六边形抽样网格框架边长为3000m,每个第一阶段样地面积为2338.27公顷;(2)第二阶段抽样层面上,对四点群团样地的内在因素进行研究,研究的群团样地的内在因素包括样地大小、群团内样地的距离、群团内子样地个数等,通过研究得到群团内子样地个数最优方案为4个,三个非中心子样地位于中心子样地的0°、120°、240°,群团内样地间距最优方案为36m,群团样地子样地尺寸最优方案为半径为7m的圆形样地;(3)根据确定下来的抽样框架尺寸和群团样地,利用地面样地数据和GF-1号遥感影像数据基于偏最小二乘回归法和k-NN方法进行了森林蓄积量估测模型的构建。使用的遥感特征变量为归一化植被指数NDVI、比值植被指数RVI、差值植被指数DVI、土壤植被指数SAVI、优化土壤调整指数NLI等共计9种,通过自变量筛选最终选择EVI、NDVI、NLI、RVI、SAVI五种变量作为蓄积量模型构建的优选变量。分别基于偏最小二乘回归法和基于k-NN方法进行了森林蓄积量建模,采用均方根误差(RMSE)和相对均方根误差(RRMSE)2个指标来评价两种方法。最终结果为采用偏最小二乘回归模型进行蓄积量反演的结果为270.08万m3,相对误差为45.69万m3,估测精度为78.82%;采用k-NN方法进行蓄积量反演的结果为184.40万m3,相对误差为31.37万m3,估测精度为85.46%。在北京市森林资源连续清查规定调查精度85%的前提条件下,基于k-NN方法反演延庆区森林蓄积量的反演结果要优于采用偏最小二乘回归法的反演结果。基于偏最小二乘回归法估测的森林蓄积量均方根误差为9.323m3/hm2,相对均方根误差为37.1%;基于k-NN方法的森林蓄积量估测的均方根误差为7.739m3/hm2,相对均方根误差为33.6%。综上所述,k-NN方法与偏最小二乘回归法相比下k-NN法效果更优,为以后关于延庆区或同纬度地区进行森林蓄积量遥感反演的相关研究提供参考。综上所述,基于三阶抽样的森林蓄积量估测方法在我国北京市延庆区可以实行。具体优化设计方案可行且高效。