基于BIM技术的工程计量数据接口标准化研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:epslon003
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
造价管理是项目管理的重中之重,成功的造价管理能够给投资者带来最大的投资效益。准确的工程量作为计算工程造价的前提,是本文研究的重点。而BIM技术具有协调性、可视化、参数化等优点,同样可以为本文的研究提供技术支持。本文主要探讨了如何建立一种契合实际造价工作的标准化计量接口。尝试将建立标准化计量接口的问题转化为建立标准化计量模型的问题。提出将实际计量工作中所需的信息与基于IFC数据标准的BIM模型相关联并标准化处理的解决方案。在此基础上再开发出相应的标准化计量接口,实现快速且精准的BIM计量,从而提高我国现阶段的工程造价信息化水平。首先本文对现有的BIM软件接口进行对比测试,得出建立标准化的计量模型可以通过数据转换标准化和计量属性标准化两个方面来实现的结论,并在此基础上给出大致的应用流程作为指导。然后在这个框架之内选取IFC数据标准作为数据转换标准化的核心,探究其对各种典型信息的表达原理以及应用于计量工作的不足,总结出进行IFC数据转换标准化工作的必要性,同时阐述其实现途径。接下来,本文结合清单分析出了计量所需的具体施工信息,再根据这些施工信息建立了标准化IFC计量属性表。完成上述工作后,为了打通清单计量规则与标准化计量模型之间的壁垒同时便于后期对构件的识别、存储、分类等,本文还建立了符合IFC标准的计量分类及编码体系。结合此分类编码体系和前文探究的标准化IFC计量属性表,通过补全缺失的IFC属性同时精简部分与计量无关的IFC属性,最终建立了不同类别构件的标准化IFC计量属性集。最后,本文综合这些成果进行了标准化计量接口的二次开发工作,主要介绍了三个方面的内容:功能模块的设计、UI界面的设计、开发流程的设计。完成接口的开发工作后,使用开发的接口结合实际项目建立标准化的计量模型计算出工程量,经过对比验证本文思路应用于BIM计量的可行性与优越性。
其他文献
随着多媒体网络和GPS全球定位服务系统的发展和相关应用普及,海量且多维度的数据呈现爆发式的增长,包括大量带有关键词属性的空间文本对象数据。目前主要通过空间数据库查询处理技术对这些数据进行分析处理,其中最重要的核心问题就是空间关键词查询技术,它能够利用兴趣点本身的空间属性与文本属性并综合考虑他们与查询之间的相关性,快速返回给用户满足查询需求的兴趣点。现有的空间关键词查询技术主要集中在经纬度坐标之间的
物联网的飞速发展使其部署在边缘的各种终端设备数量迅速增长,通过终端设备收集与传输的数据量也在增加,而物联网终端设备在与平台进行数据传输的过程中,大多缺少适合于物联网环境的高效身份认证和加密通信机制,因为传统互联网中的很多经过人们长久检验的安全机制由于终端设备的计算能力限制等其他特性而并不适用于物联网设备。为了确保大规模部署在无人监管环境中的终端设备安全,本文对物联网环境下终端设备的安全入网方案、身
蛋白质赖氨酸乙酰化(Lysine acetylation,Kace)参与细胞的各种生理活动,与DNA修复和细胞信号传导等生物学过程密切相关,是最重要的翻译后修饰(Post-Translational Modifications,PTMs)类型之一。Kace在生物体中的动态调节,是保证各种生物功能正常进行的重要条件,而异常的Kace修饰将导致各种疾病的产生,如糖尿病、癌症和神经退行性疾病。因此,Ka
随着信息技术的飞速发展与互联网的普及,网络用户更加热衷于在互联网上发表自己的观点、态度,各类网络平台上积蓄着用户大量的评论文本信息,例如购物网站的商品评论、新闻网站的新闻评论、社交网站的社交评论等。这些评论文本信息中大都蕴含着互联网用户所发表内容的情感倾向,对互联网上这些带有情感色彩的评论文本进行整理分析,这对于各个行业都有重大效益。使用自然语言处理中的文本情感分析方法可以对这些带有情感色彩的评论
随着大数据成为国家基础性战略资源,许多企业和组织希望从海量数据中取得经济利益,并为用户提供便利。对于大多数企业和组织来说,他们没有处理海量数据的能力。因此,将数据挖掘任务外包给云计算服务机构有效地解决了这些企业和组织计算和存储容量不足、资源利用不足和资金投入等问题。但随之而来新的安全隐患,核心问题是数据所有者不希望自身敏感信息被别人知道。因此,隐私安全问题是海量数据挖掘技术应用的主要瓶颈之一。频繁
在大数据时代,海量多模态数据广泛存在,怎样通过模态数据间的互补学习来挖掘数据中隐藏的巨大价值,是现阶段大数据研究关注的主要问题。本文研究领域图像标题生成和视觉问题回答便是在寻找图像与文本这两种模态数据之间的桥梁。图像标题生成任务是让机器自动生成一个有意义的句子来准确描述该图像的内容,属于计算机视觉与自然语言处理的交叉领域。现有研究多通过卷积神经网络编码图像信息,循环神经网络解码生成文本信息,在此基
精神分裂症(Schoziphrenia,SC)是一种神经退行性疾病,患者在认知、记忆、情绪、运动感知等方面均有不同程度的障碍。SC患者的大脑信号异常,在结构和功能上发生的病变可能导致了其病理生理的失调。而目前,SC的诊断仍然主要依赖于患者的行为表现评分。由于对病因的认知不足,诊断方式相对单一等问题尚未解决,研究一种有助于诊断和治疗的生物标志有着重大意义。神经影像学的发展为研究精神疾病提供了更好的手
代码作者归属是识别给定代码作者的过程。随着越来越多的恶意软件和先进的变异技术出现,恶意软件的作者正在创造大量的恶意软件变种,寻找恶意代码作者身份的方法也随之成为热点。恶意代码中残留了显示作者风格的特征,这些信息可以帮助预测特定恶意软件的作者使用的工具和技术类型,以及恶意软件传播和发展的方式。代码作者归属技术可以用来识别和分类恶意软件的作者,选择较为明显的代码风格特征和更加高效的深度学习方法,对代码
计算机技术以及互联网技术在教育领域的持续发展受到了教育工作者及相关人员越来越多的关注,在线教育平台因其对时空界限的突破、对优质资源的整合等特征,自诞生以来就受到了各方关注。尤其是在2020年新冠疫情肆虐的背景下,在线学习更加被大众所熟知和使用。但与传统的教学形式相比,维持着庞杂信息的在线教育平台往往会因为缺少合适的维护而产生海量的信息碎片,在缺乏有效指导的情况下,学生的学习往往停留在较浅的层次,从
面对爆炸式增长的电子文本,人们所关心的是如何对这些数据信息进行智能化处理,并从这些文本中获取到用户真正关心的问题。在该背景下,信息抽取的概念被提了出来。事件抽取是信息抽取领域的一个子方向,同时也是该领域的一个研究重点和难点。传统的基于模式匹配的事件抽取方法需要手工的方式构建模式,这种方法耗费大量资源。基于特征的方法在提取特征的过程中会过度的依赖自然语言处理工具,这一过程也会耗费许多人力资源,而且还