【摘 要】
:
聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)为高分子聚合物材料,目前已广泛应用于柔性电子、微流体、微机电系统以及生物医学等领域。合理的微孔结构可丰富PDMS薄膜的材料性能,拓宽其应用范围。在众多PDMS薄膜微孔结构制备方式中,激光加工具备非接触、高精度、高灵活性等显著优势。相较于飞秒、皮秒等激光器,纳秒激光器应用成本低、稳定性高;相较于红外、绿光等光源,紫外光源可获得更小聚
【基金项目】
:
国家自然科学基金青年科学基金项目“柔性压力传感器分级压峰结构及其线性度增强方法”,编号:52005206; 湖北省重点研发计划“高端亚纳秒 532nm 激光器及其高透明玻璃激光三维切孔装备研发”,编号:2020BAB051
论文部分内容阅读
聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)为高分子聚合物材料,目前已广泛应用于柔性电子、微流体、微机电系统以及生物医学等领域。合理的微孔结构可丰富PDMS薄膜的材料性能,拓宽其应用范围。在众多PDMS薄膜微孔结构制备方式中,激光加工具备非接触、高精度、高灵活性等显著优势。相较于飞秒、皮秒等激光器,纳秒激光器应用成本低、稳定性高;相较于红外、绿光等光源,紫外光源可获得更小聚焦光斑,且PDMS薄膜对其吸收率更高。因此,本研究采用纳秒紫外激光器对PDMS薄膜进行微孔结构加工。然而,微孔形貌成因不明、加工工艺规律不明、微孔加工质量欠佳等现状制约了PDMS薄膜纳秒紫外激光微孔加工的工业化应用。为了实现PDMS薄膜微孔结构的高质高效加工,本文围绕PDMS薄膜纳秒紫外激光微孔加工机理、工艺规律、参数优化及应用展开相关研究工作,主要研究内容包括以下三方面:(1)针对微孔形貌成因不明的问题,综合考虑材料、激光种类与加工条件的实际情况,剖析PDMS薄膜纳秒紫外激光蚀除现象并得出反应主导机制,通过预实验对相关推论进行验证并进一步阐明材料激光蚀除过程;基于上述理论基础,建立PDMS薄膜激光微孔加工瞬态热-应力耦合模型,对加工过程中各时间、空间节点上的相变、温度场以及应力场等信息进行求解与分析,得出热-应力行为对微孔加工质量影响机制。(2)针对加工工艺规律不明的问题,通过外推法求取PDMS薄膜激光微孔加工阈值能量密度,为单因素工艺实验的参数设置提供指导;鉴于PDMS薄膜热解温度低且材料性能易受外温影响,将环境温度引入实验变量,通过单因素实验法探究脉冲能量、脉冲个数、离焦量、环境温度对微孔加工质量的影响规律,结合微孔质量影响机制对部分实验微孔几何形态与表面形貌的形成原因进行解释,进一步验证上述机制的正确性,同时为加工参数优化提供工艺区间。(3)针对微孔加工质量欠佳的问题,基于单因素工艺实验所得工艺区间,设计并开展以脉冲能量、脉冲个数、离焦量、环境温度为因素组合的四因素五水平正交实验;通过极差分析法求得各因素对孔径、孔深、锥度以及褶皱区影响的显著性,并得出最优盲孔工艺参数与最优通孔工艺参数;此外,通过有限元仿真分析与实验测试,进行基于优选参数的柔性器件拉伸性能增强研究,结果显示优化后柔性电极最大拉伸率由原来的13%提升至43%。
其他文献
目的本研究主要探索肝窦内皮细胞(Liver sinusoidal endothelial cells,LSECs)在生理状态下和模式识别受体(Pattern recognition receptors,PRRs)信号通路活化的状态下对肝内自然杀伤细胞(Natural killer cells,NK cells)的免疫调控作用,明确LSECs对NK细胞表型和功能的影响及其具体作用机制。方法1、常规方
我国现处于迅猛发展阶段,武汉市作为GDP全国排名前10的城市,城市化进展迅速。一方面这一态势正在剧烈地改变着城市下垫面的属性和城市形态特征,从而影响区域的陆气过程,这些都是导致城市热岛、城市高温化的重要因素;另一方面,城市作为人类的集中聚集地,高强度、高密度的人类活动会带来区域不同类型人为热量的大量释放,加剧城市微气候的变化,这同样会使得城市高温化趋势越来越明显,城市热岛效应问题日益严重。总结估算
数据流量的爆炸式增长对先进光纤通信网络的质量提出了更高的要求。对光纤通信网络中的光学波导器件进行高精度地传感测试变得尤为重要,基于白光干涉技术的光纤传感系统有着微米级别的空间分辨率,进行传感测量时具有得天独厚的优势。同时,通信系统的安全性也不容忽视,基于白光干涉技术的光纤通信系统不仅提高了通信的安全性,更是实现了数据传输的隐匿性。为了满足光纤通信系统中高精度传感与数据传输安全性的需求,本文对基于白
细菌在次级代谢过程中产生的天然产物具有丰富的化学结构和生物活性,包含着抗生素、抗癌药物和抗病毒药物等多种类型的小分子候选药物,是开展新型药物研发的重要资源。在细菌基因组中,编码各种天然产物合成的基因以生物合成基因簇(Biosynthetic Gene Cluster,BGC)的形式存在,为从序列到表型的天然产物发掘奠定了理论基础。近年来,测序技术的进步导致细菌基因组数据飞速扩增,推动了BGC预测工
随着集成电路、平板显示、太阳能电池等产业的发展,加工精度不断提升,器件的特征尺寸减小至纳米量级。纳米器件的三维形貌结构尺寸、薄膜厚度、材料的物理光学性质等对器件的性能有着极大影响,因此对这些参数进行准确、快速、无损的检测对提升器件性能具有重大意义。现有较高精度的扫描电子显微镜等测量方式测量效率极低,操作繁琐,且具有破坏性,难以满足纳米结构的测量需求;传统时间调制型椭偏仪能够完成无损精确的检测任务,
农业挥发氨是氮循环中N元素流失的主要途径,此过程不仅是大气雾霾形成的主要推手,也导致了大量的能源浪费。同时,由于传统的Harbor-Bosch法生产氮肥已经达到了理论极限值,消耗大量能源的同时对环境也带来了极大的挑战。等离子体固氮技术是一种解决现有能源及环境问题的绿色氮肥制备技术,但是目前也由于能耗问题其实际应用受到了阻碍。早期的研究主要集中在使用放电等离子体分解工业废气氨。本研究创新性地提出了使
随着电子元器件的尺寸趋于小型化,电子元器件中集成电路的密度越来越大,这给电子封装的可靠性带来了挑战。为了更好地理解高温下封装材料的特性,需要一种更有效的原位翘曲检测方法。本论文在现有的三维数字图像相关法(3-Dimension Digital Image Correlation,3-D DIC)测量技术的基础上进行了改进,研究了一种基于红外-数字图像相关的位移-温度耦合测量技术,设计搭建了测量硬件
反复妊娠失败(Recurrent pregnancy loss,RPL)在育龄期女性中发生率约为5%,每年影响我国超过130万女性。目前临床上有超过50%的RPL无法确定明确病因,这对于处于育龄期、渴望拥有健康后代的女性患者来说会产生极大的心理负担。正常妊娠的建立和维持,要求母体子宫内局部环境维持稳态,而母体蜕膜功能障碍可能造成RPL。值得注意的是,在RPL发生时,母体的蜕膜组织在分子水平上发生了
研究目的:主动脉夹层是一种急性致死性疾病。血管紧张素Ⅱ干预后可导致小鼠主动脉夹层的发生。目前,尚不明确不同剂量的血管紧张素Ⅱ干预对小鼠主动脉夹层发生的影响。本研究通过给予不同剂量的血管紧张素Ⅱ干预小鼠以明确其对主动脉夹层的发生率及死亡率的影响,并探讨其可能的机制。实验方法:33只6周龄雄性ApoE-/-小鼠随机分配至4组:对照组(6只)、血管紧张素Ⅱ干预剂量为1000 ng/kg/min组(9只)
雷达隐身技术的关键在于降低设计目标的雷达散射截面(Radar Cross Section,RCS),X波段(8-12 GHz)作为雷达的常用工作频段具有重要研究意义。相位梯度频率选择表面(Frequency Selective Surface,FSS)的提出为RCS缩减指明了新设计方向,幅值梯度FSS借鉴阵列天线综合抑制副瓣的方法为斜入射后向RCS缩减提供了新设计思路。本文旨在综合利用相位和幅值梯