论文部分内容阅读
自适应逆控制作为一种新颖的控制器和调节器的设计方法,引起国内外学者越来越广泛的研究兴趣。现代神经网络技术的发展为非线性自适应逆控制的研究和实现创造了条件,探索和设计合理的动态神经网络结构和算法,构建更加有效的系统结构等已成为非线性自适应逆控制研究的重点。本文研究了神经网络的结构和算法,及基于神经网络逆模型的非线性自适应逆控制系统,主要研究内容如下:首先,系统分析了RBF网络中现有的几种确定聚类中心的算法:K-均值聚类法、梯度下降法、正交最小二乘法和动态聚类法。针对动态聚类法中距离门限值是固定不变的这一缺点,提出了一种改进的动态聚类法,根据样本密度对距离门限值进行调整,通过对煤气炉数据辨识的仿真研究,验证了该算法的有效性及快速性。其次,将RBF和BP这两种神经网络应用到自适应逆控制系统中,经一阶惯性环节的仿真结果表明RBF网络的泛化能力较低,影响了系统的控制精度。将基于BP网络的自适应逆噪声消除方法应用到轧辊偏心厚度控制中,仿真结果表明,该方法能很好地消除带钢的厚度偏差,各项指标均优于PID控制,为轧辊偏心厚度控制提供了一个新的解决方案。最后,将基于BP网络的自适应逆噪声消除方法应用到一个非线性系统控制中,系统的控制误差和均方差均小于其它方法,验证了该算法对非线性系统控制的有效性。