论文部分内容阅读
近年来,随着IVD(体外诊断)技术的迅猛发展,特定蛋白、酶以及小分子等物质在人体内含量的检测已经成为判定肌体组织健康状况的重要手段,而用来检测上述物质浓度的特定蛋白分析仪的研究较为滞后,且目前的研究大多集中在仪器的自动化与智能化领域,对仪器的核心检测模块(光电系统)研究较少,而光电系统的性能指标直接影响着仪器的检测精度与临床诊断结果。此外,分析仪常用的以卤素灯为代表的光源功耗大、寿命短、光衰减明显且温度过高,严重影响检测过程中上述物质的活性,从而影响检测结果并容易造成光能量损失。为了解决以上问题,本文基于LED发射光谱,提出了新型组合式LED光源结构。该结构将不同发光波段的LED发出的且经过反光罩和凸透镜的光线汇聚形成覆盖340~800 nm仪器工作波段的且光强集中的点斑。基于全息凹面光栅的基本原理,提出了以罗兰光栅为基底,摆脱复杂的光谱平场化算法,采用双透镜结构作为转换模块,将罗兰光栅本应呈现出的球面光谱过渡到平面场,可被光电传感器直接读取的新型光学结构并设计了组合式像差矫正透镜。根据光线追迹原理,利用TracePro对光源结构进行了仿真和优化。结果表明,LED发射出的光线能够汇聚形成理想的点斑;光斑中心的竖直方向与水平方向辐照度值一致;光强主要集中在光斑中心点处,半径仅为1.0 mm。使用ZEMAX对光学结构进行了模拟和优化。结果表明,光学结构的光谱平场化效果明显;单色光分辨率达到0.3~0.7 nm,能够覆盖340~800 nm的光谱范围,能量较为集中,接近光谱仪标准。另外,利用EDA软件对电路原理图进行了设计,并结合电路图简要介绍了Keil MDK5环境下的软件系统。结合整机结构,对光电系统进行了实验与分析,且实验测试结果与仿真结果基本一致。根据行业标准,对仪器进行了性能测试。测试结果显示,基于本课题所设计的光电系统的特定蛋白分析仪的杂散光、吸光度线性范围、吸光度准确度、吸光度稳定性、吸光度重复性等各项指标均达到行业标准,且其中多项指标优于同类仪器,具有广泛的应用前景。