重载铁路钢轨非对称型面打磨策略研究

来源 :华东交通大学 | 被引量 : 0次 | 上传用户:striveadvance
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着我国重载铁路的发展,我国的货物运输能力得到了大大的提升。由于其运量大、高密度运行条件导致轮轨运行环境十分恶劣,造成某些线路钢轨的非正常病害发展十分迅速,使得线路保养成本大大增加。一个合理的钢轨打磨型面可以使得轮轨匹配性能得到有效的改善,从而延长钢轨的使用寿命。本文基于国内外学者的研究方法,以重载铁路曲线段磨耗轨代表型面为基础,提出多弧段钢轨廓形设计方法,采用粒子群算法对其求解,最终得到钢轨非对称打磨型面,并对其进行评估分析;最终,以设计型面为打磨目标采用多打磨石对磨耗轨代表型面进行打磨仿真研究。其主要的工作内容及创新如下:(1)对车辆实际运营线路数据采集,选取磨耗轨代表型面为非对称型面设计提供指导。分别采用极坐标系下算数平均法与弗雷歇距离法对磨耗轨数据进行处理,通过对曲线半径R800m线路轮轨接触点分布密度函数计算,得出极坐标系下算数平均法所求的左右磨耗轨代表型面下,轮轨接触点分布密度函数曲线与实测磨耗轨的相似度分别为83.43%、85.23%;弗雷歇距离法为71.08%、81.43%。确定采用极坐标系下的算数平均法对磨耗代表廓形进行处理,能够更好的表现钢轨的磨耗特性。(2)提出多弧段钢轨廓形设计方法,以圆弧半径以及圆弧相切点横坐标为设计变量;以轮轨接触点横向分布密度函数、降低轮轴横向力为目标函数;以磨耗轨代表型面为优化参数边界条件;建立非对称性钢轨打磨廓形设计模型,运用粒子群算法对钢轨廓形设计模型进行求解,得到货运曲线段内外轨非对称打磨型面。(3)对设计的钢轨非对称打磨型面进行动力学性能评价、磨耗分析以及有限元分析,结果表明在轮轨作用较激烈的线段,设计的非对称型面对列车动力学性能提升效果比标准打磨型面提升的效果大,在大半径的曲线段,标准打磨型面与非对称型面两者的动力学效果相差不大。总的来说,标准打磨型面与设计打磨型面两者的动力学性能效果相差不大。采用设计打磨型面时,轮轨接触斑面积增大,增大比例为3.53%;轮轨最大接触应力减小,减小比例为1.52%;设计型面能够降低轮轨磨耗、改善磨耗分布特性。(4)以实际磨耗轨代表型面为打磨对象,分析打磨石在不同打磨深度情况下的打磨角度、打磨光带宽度以及磨削面积的规律,针对设计打磨型面得出左右磨耗钢轨的打磨去除量分别为S_L=51.09mm~2,S_R=20.91mm~2;同时基于GMC-96打磨列车打磨角度范围,以设计的非对称打磨型面为指导,对磨耗轨代表型面进行打磨仿真设计。
其他文献
随着科技和工业的发展,制造类产品都将遵循生命周期的轨迹,进入衰退期阶段。衰退期产品的供应链运营质量,对企业可持续发展有着重要影响。而既有的研究极少涉及衰退期品供应链的运营策略,研究理论够不完善,实证案例也不充足。本文的研究将从理论上系统论证和阐述衰退型产品的供应链运营方法,希望对中国企业衰退型产品的生命周期管理具有积极参考价值,从而对中国企业完善供应链运营管理起到积极的作用。本文首先分析了衰退期供
目前,我国干旱问题日趋严重。干旱可以使大多数高等植物,特别是农作物的生长受到明显的抑制,严重时甚至导致萎蔫,对农业和畜牧业生产造成了严重的威胁。长期生长在我国干旱、
Euclidean最短路径(ESP)问题是计算几何中的经典问题,很多实际应用问题都可以抽象成ESP问题进行求解。平面内Partial-Order线段集ESP问题是从最短巡视员路径问题抽象出来的一
在当前我国房地产行业宏观调控加强的背景下,房地产开发企业的境内融资渠道全面收紧。房地产开发企业开始转向海外融资,一些企业通过发行海外债券来进行融资。在2017年-2019年,共计发债1603.09亿美元。在此背景下,发行海外债券的房地产企业受到人民币汇率波动风险、国际利率水平波动风险等风险因素的冲击。这些风险因素会影响房地产企业的财务安全、经营状况和发展态势,因此测度及防范海外发债风险是房地产开发
随着环保意识的日渐提升,人们越来越重视氢能的开发与利用。在氢能的发展应用中,研究和开发性能优异的储氢材料十分关键。本文以商业化的AB5型储氢合金为研究对象,在AB5型储氢合金的主要组成元素中,Pr、Nd价格高昂且不断上涨,为了提升储氢合金产品性价比,采用感应熔炼法制备了(La1-xCex)(Ni Co Mn Al)5.5(x=0,0.25,0.50,0.75)、(La0.75Ce0.25)Ni C
毛乌素沙漠南缘属于多层次过渡带,生态环境脆弱,是沙丘移动的活跃地带。蒙古岩黄芪(Hedysarum mongolicum)为豆科植物,其耐贫瘠、寒冷、干旱和沙埋,在半流动和流动沙丘上种植
寻找非线性微分方程的精确解一直以来都是科学家们研究的核心问题之一.本文的第一部分就是对广义的Equal width方程和广义的Pochhammer-Chree方程应用多项式完全判别式法,从而
本文立足于位于上海浦东的T大型居住社区,重点聚焦快速城镇化进程的特殊产物——大型居住社区的公共服务供给情况。随着城市的飞速发展,城镇化进程的进一步加快,大量大型居住
文中给出了一类2×2算子矩阵的本征值与本征函数系的性质,得到了其广义本征函数系形成Hilbert空间块状Schauder基的一个充分必要条件,这为使用分离变量法求解某些辛弹性力学
截至目前,越来越多证据表明全球变暖已经成为一个毋容置疑的事实;而植被作为生态系统中关键的组成部分,对气候变化的响应十分敏感。柴达木盆地位于青藏高原北部,地理位置特殊,