论文部分内容阅读
基于机器视觉的智能导航系统是智能交通系统的组成部分,是智能车辆导航系统的一项关键技术,而道路图像检测跟踪系统又是智能导航系统中的重点部分,本文针对智能车辆视觉导航系统研究了基于机器视觉的图像处理和分析的道路检测和跟踪算法。论文介绍了智能交通系统的研究背景、研究意义、当今国内外的发展现状、发展趋势和难点;介绍了实现道路检测算法所采用的计算机视觉理论和方法。本文利用视觉传感器(摄像机)采集道路图像,主要利用Virtual c++对算法进行仿真。在图像滤波和增强处理方面,经过试验效果对比,特别是通过对比在对图像加入噪声模拟气候条件不好的情况下,发现采用中值滤波效果好、速度快,滤波后边缘也比较清晰,利于以后的继续处理。在图像边缘检测中,通过仿真实验比较,本文利用Sobel算子,它的优点是方法简单、计算量小、处理速度快,并且所得的边缘光滑、连续、误差率低,而且Sobel算子对噪声条件下的图像检测效果比较令人满意,受到噪声影响小,检测结果边缘比较连续,比较适用于道路图像检测跟踪系统。在本文中,为了提高系统的实时性和鲁棒性,需要对图像进行二值化,选择利用对最佳阈值分割方法进行改进,采用迭代方法,提高了算法的抗噪声能力。为了更好的提取道路图像的车道线,提出了利用基于集合思想的数学形态学,形态学运算保证了道路区域的封闭性,同时对噪声有很好的滤波作用。对于道路图像的车道线,本文采用直线道路模型等道路约束条件,利用Hough变换进行直线特征提取,Hough变换鲁棒性好,抗噪音性能强,且能连接共线短直线。通过直线参数可以求出车辆相对车道线的位置偏移和角度偏移,接着论文提出利用卡尔曼滤波对车道线跟踪。论文还提出了针对不同路况同时利用GPS、红外等异类多传感器进行信息融合,从而达到利用多个传感器联合导航的优势,提高导航系统的有效性。利用采集的实际道路图像对本文提出的算法进行仿真实验,仿真结果表明道路检测和跟踪算法是可行的和有效的。