论文部分内容阅读
塑料高分子的科技进步给人类带来了巨大文明,但大量废弃物的出现也给人类提出了严峻的挑战。超临界流体(Supercritical Fluid,SCF)技术是一种有效处理塑料废弃物的绿色环保方法,然而,超临界流体相对苛刻的反应条件限制了该技术的工业应用。本文在自行设计的高压反应装置中,以聚烯烃塑料—聚乙烯、聚丙烯为原料,以降低生产成本为出发点,同时积极探索聚烯烃降解的机理,为超临界流体在塑料废弃物处理领域的应用提供有价值的依据。本文主要在以下几方面开展了研究和探讨:(1)以聚丙烯为研究对象,研究了压力、温度和反应时间等对聚丙烯在超临界水中降解行为的影响。用乌氏黏度计测量产物的黏均分子量,色谱-质谱检测分析液体油的组成结构和成分。实验结果显示:在本实验的条件下,聚烯烃类塑料—聚丙烯在超临界水中可以完全转化成单体和低分子;在反应的前30分钟内,降解速度最快:温度是影响降解反应的重要因素。(2)选取一种常用的工业自由基引发剂——过氧化苯甲酰(BPO)作为添加剂,研究了其对聚丙烯在超临界水中降解行为的影响。对使用添加剂和未使用添加剂的实验产物采取多种方式检测对比,结果表明:在反应温度较低和反应时间较短的情况下,添加BPO可以有效促进聚丙烯的降解,达到与未添加BPO实验中高温和长时间反应相比拟的效果。同时讨论了聚丙烯在超临界水中降解反应机理,对BPO在反应中的促进作用也进行了分析。因为BPO热分解温度很低,过氧键(O—O)容易断裂产生自由基C6H5COO·。BPO的降解反应为放热反应,该初始反应放出的能量部分提供给了链断裂所需要的能量,导致自由基C6H5COO·容易裂解形成一个新的自由基C6H5·。两种自由基均比较稳定,可进攻聚烯烃大分子链,进一步形成大分子自由基,且在大分子链上产生活性点。随着反应时间的增加,引发剂BPO不断分解,自由基浓度增加,造成聚烯烃的大规模降解。因此在相同反应温度和反应时间条件下,加有BPO的实验产物平均分子量要明显小于对照实验产物测量结果。(3)讨论了升温升压过程对聚丙烯在超临界水中降解的影响,认为升温升压过程也是影响聚丙烯在超临界水中降解的一个重要因素。在此研究中详细记录了聚丙烯降解的升温升压过程,升温升压过程经过气相区进入超临界区的称为过程一,升温升压过程经过液相区进入超临界区的称为过程二。在本实验的条件下,不同的升温升压过程将导致实验结果产生很大的差异;适当控制反应中的升温升压过程使其经过液相区进入超临界区,将有效促进聚烯烃塑料的降解,从而降低生产成本。(4)以聚乙烯为研究对象,详细讨论了结晶度对聚乙烯在超临界流体中降解的影响。结果表明:超临界条件下塑料的降解与一般水热条件下的降解有很大的不同。高分子材料一般由晶体和非晶体两部分组成。它们的分子都是长链状,链内碳原子间靠共价键连接,具有很强的结合力。而链与链之间则靠范德瓦耳斯力相互结合,在晶体情况下由于分子整齐排列,分子间的范德瓦耳斯力比在非晶中要强得多。当这样的材料处于一般水热反应条件时,链间结合较弱的非晶体便较容易作为单链溶解,进而非晶部分发生降解,但晶体部分仍然存在,从而结晶度提高。当这种材料处于超临界水中时,由于压力和温度的提高使溶剂和溶质的分子间相互作用大大增强以及超临界流体中大量自由基的存在,塑料高分子中无论晶体和非晶体的分子长链都会受到攻击,从而降解成为短链小分子量的低聚物,这种过程对晶体和非晶体都是同等的,链间结合力的差别在这样的条件下已经显示不出来。