论文部分内容阅读
近年来,随着石油资源紧缺,非降解塑料污染及人们对环保意识的增强和自身健康问题的关注,新型生物可降解材料的研究与开发成为研究的热点。淀粉、纤维素、甲壳素等天然高分子具有来源广泛、生物可降解、生物相容及低成本的特点,经酸水解后可以获得刚性聚多糖纳米粒。目前,聚多糖纳米粒在天然橡胶,天然高分子及合成高分子等复合材料中具有广泛应用,取得了良好的增强效果,热性能及力学性能均得到不同程度的改善。由于聚多糖纳米粒表面具有-OH基团,可以在聚多糖纳米粒表面进行化学官能化改性。目的在于改善聚多糖纳米粒与聚合物基质间的相互作用,提高其相容性,甚至形成共连续相结构。因此天然聚多糖纳米粒的研究与开发备受关注,研究的重点主要集中在通过化学改性和物理改性的方法制备出具有良好力学性能、可降解的“绿色”纳米复合材料。本论文的主要研究内容包括:(1)将马铃薯淀粉淀粉纳米晶(StNs)分别在水性聚氨酯(WPU)合成的扩链阶段、乳化过程中及乳化之后三个阶段进行添加,考察StNs含量及化学接枝程度对材料性能的影响,得到同步增强、增韧的纳米复合材料;(2)基于“Graft from”思路,采用微波辅助开环聚合方法,在纤维素纳米晶(CN)表面接枝聚己内酯链段,且通过热成型方法得到全生物降解纳米复合材料。(3)利用微波开环聚合方法在纤维素晶须(CW)表面接枝聚己内酯,并将其接枝产物与聚乳酸(PLA)基质进行复合,通过接枝聚己内酯(PCL)链段与PLA间相互作用,得到强度和伸长率增加的全生物降解纳米复合材料。本论文的创新点在于:(1)淀粉纳米晶能够在低含量情况下达到同步增强、增韧,明确了同步增强、增韧的机理及调控因素,建立了利用聚多糖纳米粒改性材料的新思路;(2)采用“Graft from”方法在纤维素纳米晶表面接枝聚己内酯,接枝的PCL链段具有增塑作用,首次直接热成型制备出具有共连续相结构的全生物降解纳米复合材料;(3)利用“Graft from”方法在纤维素晶须表面接枝聚己内酯,增强了纳米粒与PLA基质间的相容性,纳米复合材料的断裂伸长率高于PLA基质。本论文主要研究结果如下:1.采用低含量淀粉纳米晶(StNs)作为纳米填料复合改性水性聚氨酯(WPU)制备新型纳米复合材料。StNs含量及接枝程度对力学性能有影响。值得注意的是,得到的US纳米复合材料的强度、断裂伸长率和杨氏模量均增加。淀粉纳米晶表面活性和刚性是同步增强、增韧作用的关键因素,表面活性促进应力转移界面形成,刚性则有利于应力吸收。同时,水性聚氨酯基质原有结构和相互作用也是提高材料力学表现的必要保证。随着淀粉纳米晶含量的增加,淀粉纳米晶的自聚集导致纳米相结构的尺寸变大,同时其数目也增加,复合材料力学性能降低。此外,由于化学接枝抑制了复合材料内物理相互作用的形成和网络密度的增加,从而淀粉纳米晶表面的化学接枝并不利于强度和断裂伸长率提高。2.首次基于纤维素纳米晶制备出可直接热成型的生物纳米复合材料,是由接枝到纤维素纳米晶表面的聚己内酯做为增塑剂经热成型方法获得的。“Graftfrom”方法有利于在纤维素纳米晶表面形成具有增塑作用、长且较密集的PCL链段,这是具有热成型性的关键。况且,接枝PCL链段改变了纤维素纳米晶表面亲水性,获得的纳米复合材料表现出较高憎水性。3.首次通过微波辅助开环聚合的方法,在棒状纤维素晶须(CW)表面接枝聚己内酯(PCL)长链。利用接枝纳米粒子对聚乳酸(PLA)基质进行流延复合改性,在力学性能上具有比片状淀粉纳米晶更好的增强、增韧效果。纳米复合材料中刚性纳米晶须的加入有助于PLA材料拉伸性能的提高,同时,接枝聚己内酯长链也可以改善PLA基质和CW-g-PCL纳米粒之间的相容性,从而促进拉伸应力转移至刚性CW纳米粒子。这种全生物可降解的聚乳酸基纳米复合材料,特别是改善了PLA基质的韧性,是一种具有应用潜力的环境友好材料。总之,本论文通过对复合材料的结构与性能关系进行研究,具有一定的学术价值。同时,建立起材料改性的新思路,具有一定的理论指导价值。此外,通过物理和化学改性的方法制备出高力学性能的纳米复合材料,拓展了天然高分子的应用,在诸如可降解塑料等方面具有潜在应用价值。