3D约束下的球体子孔径校准与拼接研究

来源 :南京理工大学 | 被引量 : 0次 | 上传用户:wanghongtao11
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
惯性约束聚变(Inertial Confinement Fusion,ICF)是一种通过采用高功率激光或离子束辐照氘氚燃料靶丸,在惯性约束情况下达到点火条件,得到大量聚变能的方法。目前中美等国都在从原理性研究向工程化推进,其中每一个细节均需要精雕细琢。靶丸作为关键性部件,表面存在任何凸起、灰尘等孤立缺陷,均可能导致聚变时产生非对称内爆甚至壳体破裂,造成巨大的损失。为实现靶丸全表面缺陷高精度、高效率、非接触的检测,项目采用光学显微干涉技术与3D全球拼接技术相结合,完成了全自动靶丸表面缺陷测量系统,直径1-2mm靶丸全表面缺陷的测量速度达到了1.5h-3h的水平。针对显微成像系统孔径与景深限制,以及全球3D拼接中面内误差修正与面外误差修正的双重要求,本文深入研究了球体子孔径校准与拼接技术。采用理论分析和软件仿真相结合的方式确定了显微成像系统的景深,提出了靶丸半径标定方法以及根据靶丸半径等参数自动排布球体子孔径位置的方法。研究了球面到平面的映射关系校准方法,解决了子孔径各像素点横向分辨率非线性误差问题。研究了球体子孔径拼接方法,根据像面坐标到三维空间坐标之间的转换公式及矩阵旋转变换公式,实现了半球子孔径的球面映射。研究了南北半球的校准方法,解决了南北半球翻转造成的空间错位,进而得到球体全表面的形貌缺陷。最后,搭建了靶丸全表面缺陷检测实验系统,对碳氢辉光放电聚合物(Glow Discharge Polymer,GDP)微球样品进行了测量,根据提出的子孔径校准与拼接技术得到球体全表面的缺陷分布情况,并对缺陷数量及大小进行了统计。证明了本文所研究的球体子孔径拼接与校准技术的可行性与有效性,为高性能靶丸的制备奠定了坚实的基础。
其他文献
车辆再识别(Vehicle Re-ID)指的是根据给定车辆图像在跨摄像头车辆数据库中搜索相同ID(Identity)车辆图像的任务,在公共安全和智能交通领域具有广阔的应用前景。车辆再识别有两个主要挑战:由于车辆品牌的影响,会导致相同车型不同ID的车辆外观相似性高(类间相似性高);因为车辆的刚体特性,使得车辆的不同姿态外观差别大,导致不同姿态相同ID的车辆图像外观相似性低(类内相似性低)。其中,姿态
在工业化的连铸钢板坯生产过程中,钢厂针对连铸坯质量的评价与分类依然主要依靠人工经验。本文基于连铸坯冷酸蚀图像中的缺陷进行预处理、分割以及分类识别,为后续研发连铸坯缺陷评级系统提供准备工作。在预处理时,中值滤波和维纳滤波对图像中的噪声可以有效去除,但多次滤波会导致图像信息的大量损失。为解决这一问题,提出一种开关结构下的快速加权中值—维纳滤波器,以减少图像滤波过程中信息的损失,并通过与中值滤波、维纳滤
电弧增材制造技术以电弧为热源熔化金属丝材,基于离散/堆积的成形原理,并沿预设路径逐层沉积制造出3D实体零件,具有沉积效率高、生产成本低等优点。双丝CMT电弧增材制造以两根异种丝材作为填充材料,在CMT增材工艺中熔滴过渡和焊丝回抽相结合的基础上,快速生成多元成分可调合金体系,解决焊丝定制成本高、周期长等难题。本课题以2系Al-Cu焊丝和5系Al-Mg焊丝为填充材料,基于双丝CMT电弧增材制造工艺对A
为了解决在野外环境下测量炮口附近的弹丸飞行姿态时,攻角纸靶法精度较低,阴影照相法要搭建复杂的光路系统的问题,基于三目视觉原理,通过激光摄像法直接拍摄弹丸实像来测量弹丸的飞行姿态,既可以得到精度较高的弹丸飞行姿态,同时也不用搭建复杂的光路系统,相对于双目视觉姿态测量方式也提高了测试结果的稳定性。在对相机的成像原理、相机标定、三目姿态测量模型以及各坐标系间的空间转换关系等分析的基础上进行了三目视觉弹丸
随着“互联网+”时代的降临,办公自动化系统(OA)在信息与技术的不断演变过程中也在不断完备。如何解决企业项目管理、人员管理以及沟通管理等一系列需求,达到其信息化战略目的,打造一款能集项目、人员、沟通等多方管理一体化协作系统平台具有重大的实际意义。本文将针对某企业协作系统,分别从系统架构、系统功能模块和系统测试等多方面进行设计与实现,并研究基于Lucene的Solr检索算法和基于CB的推荐算法为系统
随着城轨列车技术的发展,地铁成为人们日常生活中不可或缺的交通工具,为保证人们出行安全,地铁的安全性不容忽视。车底状态检测是地铁检测的重要环节之一,但地铁段检、厂检会存在漏检情况。当前国内还没有一套完整的地铁底部复现技术和基于图像自动检测技术,因此本文对地铁底部做了相应的研究。主要工作内容如下:(1)对地铁底部图像拼接与关键部件螺栓检测系统进行总体架构设计,在需求分析的基础上,确定系统架构、系统工作
随着机器视觉的发展与应用,将视觉检测技术运用于工业场景中已经成为智能制造业的热潮。钢水浇筑在生产过程中,存在很多不可控的质量问题,在制造过程中会出现部分划痕、形变等瑕疵,而操作人员需要近距离判断检测浇筑钢爪的合格与否,这样的检测方式效率过低。为此本文分析和应用了基于深度学习的目标检测框架进行训练,实现形态各异、多角度的钢爪识别与检测。论文主要完成以下工作:(1)分析了本文检测目标的实际环境和需求,
近年来,随着高清视频采集设备在生活中的普及,单目相机的数据量得到了迅速的增长。如何处理这些数据,从中获得有价值的信息,是计算机视觉领域的一个重要问题。数据中的人物姿态与行为,因其具有巨大的潜在商业价值,成为研究者重点关注的对象之一。近年来随着深度卷积神经网络在多个计算机视觉任务上取得的突破,行人检测、人体姿态估计、动作识别等与人相关的任务也受到越来越广泛的关注。本文聚焦于单目彩色图像数据中的二维人
情感分析是对文本中表达的评论、情绪和情感进行的计算研究。近几年来,情感分析引起了业界和学术界的广泛关注。在世界各地,社交媒体已为人们提供了以母语共享个人观点的趋势。对于这些评论的情感分析,机器学习算法是研究者的主要选择。在提出了复杂的机器学习算法和硬件升级版本来运行实验之后,研究界开始转向利用深度学习完成情感分析任务。过去五年的背景研究证实,深度神经网络(CNN、RNN和扩展版LSTM)取得了显著
无人机相较于固定监测设备有着价格低廉、部署方便、机动灵活等优势,在智能交通信息采集方面具有广阔的应用前景。为此本文在普通城市道路的复杂路况背景下,以YOLOv3算法为基础,对于航拍视角下车辆目标与跟踪技术进行研究,在降低计算资源、加快速度和增强精度等方面做出针对性改进。在车辆检测方面,为了改善YOLOv3算法在航拍车辆检测上的应用效果,本文提出了YOLOv3-Aerial航拍车辆目标检测算法,对默