论文部分内容阅读
孔道尺寸、形状、均一性及组成可控的多孔材料,能够获得较高的比表面在受限空间与所遇物质产生相互作用,因此在科学研究与技术应用上都引起了人们极大的兴趣。微孔沸石代表了这种科研和工业应用互为琴瑟之和的范例,在其鼓舞之下,随后发展的多孔材料多被寄予厚望。二十世纪八十年代末,沸石合成的概念分别在金属-有机配位聚合物领域和介孔(2-50nm)材料领域得到了延承和发展,例如MOF-n和M41S系列。更多具有不同结构、组成的多孔材料逐渐问世并显现出特殊的性质及应用潜质。在一定程度上而言,对多孔材料微观或介观结构的控制合成正在得到实现。不过,获知孔道大小、形状、走向等全面的信息对指导合成、探知合成机理与应用材料都还是很有裨益的。金属-有机配位聚合物和介孔材料有着不同的“晶体”本质,对其结构相应的视点也有不同的侧重。对可获得单晶结构的金属-有机配位聚合物而言,结构细节很清楚,借用拓扑分析可以去繁存简,明晰孔道的走向。而对有序介孔材料而言,如何精确解析孔道分布和结构细节却富有挑战而引人入胜。另外,利用金属-有机配位聚合物和介孔材料合成领域各自的一些优势,导向合成组成更为丰富的复合介孔材料,将会拓宽介孔材料的可控合成。本论文分为三大部分:第一部分主要介绍采用低对称性有机羧酸配体控制合成的微孔金属-有机配位聚合物结构。在第二部分中,三维重构介孔材料结构及其方法的发展提供了一种参与指导合成介孔材料孔结构的工具。第三部分,一种钛-柠檬酸聚合物前驱体被用于多元有机-有机自组装合成杂化介观有序聚合物及其衍生物,介孔过渡金属碳化钛/碳纳米复合材料。在发展微孔金属-有机配位聚合物的伊始,高对称性、多连接刚性有机配体便是设计合成的首选。不过,低对称性有机羧酸配体以其特殊的空间构型、易于取得、简单或者能够很好的螯合金属等属性,而得以逐渐地参与组装新型金属-有机配位聚合物。在这一大部分中,我们首先选用间苯二甲酸、简易的合成方法和策略获取多种不同维度交联的结构,并观察到了配体弯曲的空间构型有助于形成低维结构,进一步调变金属簇可以发展聚合物在三维方向上的配位连接。这个观察进一步被两个噻吩-2,5-二甲酸的聚合物体系支持,而这个配体有着类似于间苯二甲酸的弯曲空间构型。再次,我们以柔性的柠檬酸为配体、吡嗪为碱或第二配体与Co、Ni、Cu、Zn组装了多种多维聚合物。从金属柠檬酸的结构片段来看,形成低维结构的倾向性还是十分明显的,利用金属簇的不同,我们合成出了三维金属-有机聚合物。在考虑到乙酸根在以上一些合成实例中的重要作用后,我们采用了乙酰丙酮原位分解生成乙酸根的反应,以期螯合稀土金属离子的部分配位点,减小稀土有机多羧酸结构的交联度。为了作相应的比较,我们还选用了高对称性配体来控制合成金属-有机配位聚合物。一种均苯三甲酸镓聚合物和均苯三甲酸锰聚合物的结构比较说明了配体空间构型只是影响聚合物整体拓扑结构的因素之一,金属簇是影响最终结构的关键因素。第二大部分主要涉及到了以嵌段共聚物为模板导向介孔分子筛的控制合成与结构解析。在相同配方、不同水热温度条件下合成的系列FDU-12样品衍射花样发生了明显的变化。通过应用高分辨电子显微像分析技术,FDU-12的空间群被归属于Fm(?)m,这类家族的空间对称性不受合成温度的影响。另外对于这类笼状介孔分子筛而言,保持高度有序的窗口增大实验手段以及对这个过程的机理研究同样十分重要。这方面我们应用了电子结晶学、小角X射线散射以及氮气吸附模拟的方法相互映证,三维重构出FDU-12的介观孔结构。同时根据获得的电子势能分布图差异,我们追踪解释了FDU-12的结构演化,并证实了FDU-12窗口增大可以从相应衍射花样中220晶面衍射峰相对强度中辨识。在应用电子结晶学解决“相位问题”之后,我们另外通过拟合小角X射线散射图提取衍射峰强度的办法,来获取电子密度分布图。由此分析了一类双级介孔碳材料和CMK-5结构上的差别,以及讨论其合成机理的不同。在第三部分中,采用钛-柠檬酸预聚物种,A阶酚醛树脂,嵌段共聚物(F127),通过溶剂挥发诱导多元有机-有机自组装和原位碳热还原反应,合成了具有不同钛含量的有序介孔碳化钛/碳复合材料。这种复合材料有着二维六方排列的圆柱型孔道(空间群p6mm),而在无定形碳墙壁内包裹得是面心立方Fm(?)m结构的纳米碳化钛粒子,粒径可控制在4-6nm之间。这类介孔碳化钛/碳复合材料具有较高的比表面(600-800 m2 g-1),较大的孔容(~0.49 cm3 g-1),较窄的孔径(3.8-4.8nm)。广角XRD检测表明在氩气气氛中生成碳化钛纳米粒子的生成温度不小于950℃,这与热重测试中此处出现热失重峰的现象相一致。在此温度之前,系列广角XRD中未曾观测到可辨析的结晶氧化钛,为报道的介孔氧化钛材料中所少见的。我们认为钛-柠檬酸聚合物前驱体的应用是一个关键因素,其保证了钛元素在酚醛树脂骨架内的高分散分布并避免了氧化钛在低温区间结晶。这种复合材料的特性是包覆的碳化钛纳米粒子能增进整个复合物在空气中的抗氧化性能。进一步而言,这种纳米多孔复合物可以提高介孔碳的电学性质以用于电极材料。这种通用策略也可以用来在多孔碳墙壁中合成其它前过渡金属碳化物以原位地生成纳米反应器,作为多孔贵金属/碳的替代催化剂。