论文部分内容阅读
本文针对Singer模型的缺陷和“当前”统计模型存在的对弱机动目标跟踪能力较差的缺陷进行了改进,设计了一种新的加速度自适应模型;利用该模型设计出新的机动目标跟踪滤波算法,该算法对机动目标跟踪的综合性能有了较大的提高。在此基础上,为了减少滤波增益矩阵的计算量,使算法易于微机工程化实现,提出对滤波增益矩阵进行变步长调整的新方法,即通过在线检测算法确定何时有必要进行滤波增益的调整,而不需要每一步都计算增益矩阵,从而较多地降低了滤波算法的计算量。通过以上两个方面的改进,不仅提高了目标跟踪的精度,而且提高了目标跟踪的快速性和实时性。仿真验证表明该算法有良好的跟踪性能,而且计算量小,易于微机工程化实现。