阳泉S矿区水文控气作用地震地质综合解释

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:chuhai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
瓦斯的赋存受构造、压力、沉积、水文等地质因素的影响,且不同区域主控要素有差异。水文地质条件是阳煤集团S矿区15号煤瓦斯富集性的关键控制因素,突出表现为瓦斯含量和瓦斯成分变化范围极大,氮气带、氮气-甲烷带大面积分布。因此,研究地下水系统及其控气作用机制非常重要。为此,充分利用地质、地震、测井等多源信息,研究了地下含水系统的地震地质综合解释方法。首先在地震沉积学理论指导下,构建了高分辨率层序地层格架,研究了15号煤层聚煤前后的沉积环境以及砂体的空间展布特征。进一步结合简易水文、水样测试等资料,开展了隔水层、砂岩和灰岩含水层及其孔隙度、矿化度的测井解释。最后,综合含水层以及断层等构造的封堵性、地层水矿化度等信息,将研究区划分为径流区和滞留区等2类水文地质单元,并分析了各个水文地质单元内瓦斯含量及成分变化特征,初步探讨了水动力条件对煤瓦斯富集程度的控制作用。主要成果如下:(1)综合研究区煤层气、煤田勘探开发地质和测井资料,构建了太原组煤系地层的高分辨率层序地层格架。(2)采用地震相位调整、切片、分频和地震属性解释等技术,优选并利用地震属性预测了聚煤前后层序内的砂地比,实现了15号煤层聚煤前后PS3和PS4层序的沉积微相和砂体空间展布特征的精细刻画。(3)根据含水层岩性和结构差异,结合岩性、砂岩孔隙度和灰岩裂隙的测井响应特征,在58口井的PS3和PS4层序内,识别了孔隙类砂岩含水层和裂隙类灰岩含水层,并对含水层厚度、砂岩孔隙度进行了解释。(4)在测井曲线预处理的基础上,利用自然电位参数,预测了地层水矿化度的平面变化规律,划分了径流区和相对滞留区。本区地层水矿化度范围为1000 mg/L~2400 mg/L,整体呈现由东向西矿化度增加的特征,与煤层气富集程度变化趋势相吻合。(5)基于构造、沉积相、孔隙度和含水层及其矿化度的地震地质综合解释成果,明确了研究区构造-沉积-岩性和物性-水动力条件对于15号煤层瓦斯富集性的控制作用;综合各要素了4类水文控气单元类型。在此基础上,在全区圈定了4个水文地质控气区。
其他文献
近年来,选煤厂作为煤炭行业的重要环节,在不断的加快智能化建设的步伐,向高端化、智能化和绿色化的方向发展。煤泥浮选作为煤炭分选的重要工艺环节,长时间以来存在生产成本高、生产效率低的问题,其工艺过程向自动化、智能化的发展势在必行。在浮选生产过程中,浮选尾煤灰分作为重要的生产指标,对实现浮选过程闭环优化控制具有重要的意义。但长时间以来,缺乏有效的灰分在线检测技术,这已经成为了限制浮选工艺智能化发展的重要
二氧化钛(TiO2)纳米线是一种典型的纳米无机材料,具有超高的比表面积、优良的光催化活性和较好的生物相容性,已经广泛用于工业和生物医学等领域。基质辅助水热法因操作简单、产物结构易于调控等优点已经成为当前最受欢迎的TiO2纳米线合成方法。传统的基质材料主要包括FTO玻璃及钛片,然而所制备的TiO2纳米线与基质材料之间的界面作用力往往较弱,导致TiO2纳米线易于从基质材料表面脱落,形态与结构难以控制。
微球具有高比表面积、良好可流动性等特点,是常用的可注射型细胞载体之一。传统的合成微球表面多是致密结构或者多孔结构,不能很好地模拟细胞外基质的纤维结构,增强细胞与材料之间的相互作用。近年来,有研究表明纳米线不仅可以很好地靶向运输载体,还能够传递生物信息。二氧化钛(TiO2)是一种无机材料,具有稳定的化学性能,在载体材料方面有较大应用前景。丝素蛋白是一种常见高分子材料,具有良好的生物相容性、水溶液稳定
掘进工作面在煤矿开采过程中会产生大量粉尘,不但严重威胁着井下工作人员的职业安全健康,也影响企业生产的发展和社会的稳定。由于掘进工作面具有机械设备多、工序繁杂、通风风量大以及空间狭窄等特点,导致巷道内粉尘生成量大且集中。目前,绝大多数煤矿未能根据掘进工作面的作业需求采取实时有效的防尘、降尘技术。本文在系统研究了国内外掘进工作面除尘技术方法的基础上,结合煤矿掘进工作面的实际情况,采用理论分析、数值模拟
为了满足现代工业对精密零部件越来越高的需求,现代机械加工的精度与稳定性也必须与时俱进。机床加工过程中产生的振动是制约其加工精度进一步提升的重要因素,而传统铸铁机床的低阻尼比导致其减振性能较差,通过优化机床结构也难以实现大幅提升减振性能。树脂矿物复合材料(Resin Mineral Composite,下文简称RMC)机床则以其优异的阻尼减振性能应用于精密加工领域,RMC是以树脂为粘结剂,破碎的天然
现代工业技术的进步日新月异,人们对材料的性能要求越来越高,单一材料现在已经不能满足人们的要求。因此,研究和制备新型复合材料并将其应用在工业领域是当下最重要的任务之一。碳钢具有强度高、成本低、加工性能好等优点,而不锈钢具有较高的表面性能和良好的耐腐蚀性,碳钢/不锈钢复合板同时具有两者优异的性能,可以节省Cr和Ni等贵金属。广泛应用于石油、化工、食品、水利等重要领域。在整个碳钢/不锈钢复合板的产业链中
ZL101属于铸造铝合金,它成分比较简单,而且具有较低的成本,较好的铸造流动性和较宽的半固态区间,是一种适合半固态加工的具有代表性的典型铝硅合金。颗粒增强铝基复合材料通过在金属基体内加入颗粒增强相的方式,使复合材料结合了基体金属的韧性、比强度,增强颗粒的强度、硬度和耐磨性等优点,是一种综合性能较优异的材料,可以满足现代技术发展对材料提出的更高要求。半固态技术具有流程短、热裂倾向低、成形好等优点,本
全球对化石燃料的依赖以及温室气体人为排放量的增加,使得未来必须开发清洁的可再生能源。太阳能是最有希望解决能源危机和环境污染的可再生能源。虽然太阳能可以通过使用太阳能电池吸收转换,但是这种光伏设备受到太阳光间歇性的限制。因此,有必要采用新的方法储存太阳能以满足能源的需求。利用太阳能驱动分解水就是一种有效的途径,因为它可以在没有碳参与的条件下产生绿色环保的氢能。本文通过使用自制的卤化物化学气相沉积(H
镁合金是目前应用较为广泛的轻质合金之一,因其轻量化的特点应用于航空、航天等各个领域,但镁合金室温下可加工塑性差、耐蚀性差等问题亟待解决。而铝合金则是仅次于镁合金的轻质合金,并且具有良好的塑变能力和耐蚀性等。因此,镁/铝复合材料可以综合两者的优势更好地满足实际需求,实现两种材料界面的稳定连接有着重要的应用价值。纳米压痕技术作为当前研究材料微观特性的有力手段之一,已广泛应用于测试薄膜、生物材料以及界面
硬脆材料具有高硬度、耐高温、耐腐蚀、耐磨损以及自身重量轻和良好的自润滑性等优良性能,在机械电子、航空航天、装甲车等国防领域具有非常重要的应用。由于硬脆材料高脆性高硬度的特点,使得常规的机械加工方法很难加工硬脆材料。电镀金刚石线锯切割是当前硬脆材料加工领域中应用非常广泛的一种特种加工技术。这种加工方法具有加工精度高、切割表面质量好、切缝小、节约贵重材料、环保无污染、加工过程噪音小、切割圆度好等优点。