论文部分内容阅读
对于埋藏较深、油层较薄的特、超稠油,常规开发和直井注蒸汽以及SAGD开发非常困难,国内外也没有成功开发经验以及先例可以借鉴。针对特超稠油油藏深、原油粘度高,注汽压力高、热波及范围小、热损失大以及回采效果差等系列开发难题,胜利油田通过HDCS强化采油技术对这种油藏进行了有效动用。本论文通过物理实验和数值模拟等方法开展了特超稠油油藏提高采收率技术研究。考虑到常规蒸汽吞吐后期可能出现的吞吐能量不足、产液量和原油产量降低等问题,HDCS吞吐多轮次生产后期亟待向蒸汽驱开发方式转换,可以在一定程度上起到恢复区块压力、补充地层能量的作用。因此,HDCS吞吐转HDCS驱对于提高特、超稠油油藏的最终采收率意义重大。在研究吞吐生产转蒸汽驱生产过程中,借助于三维物理模型,对整个吞吐过程以及蒸汽驱替进行了具体的模拟,并深入探讨了降粘剂与二氧化碳在整个模拟过程中对原油性质的影响情况以及CO2和蒸汽对降粘剂扩散的影响等。试验过程中,对吞吐及转驱生产过程中的采油、产液、回采水、含水率等特征进行了分析,并通过三维物理模型在油藏不同位置的压力与温度实时检测功能,对油藏的温度压力变化在流体不同注入阶段进行了精确监测,得到了油藏温度场及压力曲线变化规律,首次对中深薄层特超稠油油藏吞吐转驱时机给出了含水85%以上,油藏压力35MPa的转驱准则。同时,对吞吐周期以及不同驱替阶段采出的原油性质作了实时跟踪研究,通过对研究结果的分析可知,在注入了降粘剂后,水平井指端的进液量要比跟端的进液量少一些,而近井地带的原油性质会受到更为显著的影响;超稠油中的沥青质含量以及分子量能够通过降粘剂得到有效的降低。从空间分布上来进行分析,降粘剂的分布是很不规律的,采出的原油性质存在比较大的差异。单纯注入降粘剂,其扩散速度较慢,作用范围较窄。注入CO2后,能显著提高降粘剂扩散速度,并且使降粘剂作用范围得到扩大,此外,还能够使降粘剂的分布更为均匀。注入蒸汽后,原油的流动性更好,使得原油的性质更均衡。在实际开采时,在同一吞吐周期内,原油粘度会加大,如果周期增加,则降粘剂解缔作用会被削弱。注蒸汽热力采油过程中,注入蒸汽和地层流体的密度差会导致“蒸汽超覆”现象,同时注入蒸汽与地层流体的流度比远大于一般稠油油藏,这不但会降低蒸汽在油藏中的波及面积,也会由于高流度比而造成蒸汽汽窜现象,不但影响特超稠油的最终采收率也会给实际生产带来困难。针对这一难题本文研制了耐高温强化泡沫体系,在筛选驱替阶段的耐高温复合泡沫体系的组成过程中,主要是借助于双管并联驱替等室内物理模拟实验,研究了分别添加栲胶、碱木素的强化泡沫体系在油藏温度、地层水矿化度、注入方式等影响因素下的封堵性能。实验结果表明,泡沫与两种凝胶体系均产生协同效应,体现为凝胶强化了泡沫的稳定性,而泡沫可携带凝胶更多的进入高渗层,进而实现泡沫体系的高效调剖;三维物理模拟实验表明,伴随蒸汽分别注入两种体系均可提高稠油油藏采收率,同时大幅降低含水率,栲胶泡沫体系的伴注蒸汽驱开采方式可比单纯注入蒸汽提高采收率20%左右,碱木素泡沫体系可提高11%左右。通过对胜利油田郑411区块目前开发状态的分析,论文进行了超稠油油藏的开发效果数值模拟研究。数值模拟结果表明,通过反九点井网生产,合理注汽速度为200m3/d,推荐采注比大于1.2,油溶性降粘剂单井合理注入量为250m3500m3,二氧化碳的单井合理注入量为20000m3,油溶性降粘剂和二氧化碳在汽驱阶段合理的注入方式为分五个段塞注入降粘剂和二氧化碳的段塞注入方式。