论文部分内容阅读
高能物理的一个重要目标是探索一种新的物质形态,即夸克胶子等离子体(Quark Gluon Plasma,简称QGP)。在实验上,带色荷的夸克胶子等离子体是无法直接观测到的,因此,我们可以通过研究QGP的一系列有效“探针”去间接了解其物理性质。其中,重夸克偶素态为近30年来理论物理学家一直关注的问题之一。在非相对论极限下,基于正确的重夸克势能函数,通过求解量子力学的薛定谔方程,从而可得到相应的重夸克偶素态的基本信息。本文的研究内容是围绕重夸克势能函数而展开。 在有限温度量子场论的实时形式下,重夸克势能函数的微扰贡献是通过对胶子的重求和传播子的时间分量在静态极限下进行三维傅里叶变换而得到。其中,重夸克势能的实部能够提供关于重夸克偶素态束缚能的物理信息,而势能的虚部可以为我们提供关于束缚态湮灭宽度的信息,这是确定夸克偶素离解温度的重要物理量。另一方面,对于重夸克势能实部的非微扰贡献通常是基于格点量子色动力学(lQCD)模拟数据来构建相应的模型而得到。然而,对于势能虚部的非微扰贡献形式目前尚未完全清楚,前期的相关工作对于湮灭宽度的处理是比较粗糙的。基于lQCD关于重夸克势能虚部模拟计算的初步结果,我们建立了唯象模型来描述这一非微扰贡献,即在长程范围内,将构成束缚态的夸克对间的相互作用等效为一维相互作用,非微扰贡献的形式通过对静态极限下胶子延迟传播子进行一维傅里叶变换而得到。一方面,通过这一方法得到的势能实部与由Karsch, Mehr和Satz建立的著名的KMS模型一致,同时,相应的虚部贡献也能定性地重现格点模拟结果。为了可以在定量上更好地对格点数据进行拟合,进一步考虑了KMS模型中弦强度这一基本参数的温度依赖形式,得到了较好的结果。本文构建模型的最大特点是可以在同一的框架下对势能的实部和虚部同时作出较好的描述。另外,在实部模型的基础上,无需引入更多的自由参数来构建势能虚部的模型。与现有的其他模型比较,该工作中构建的模型不仅具有相对简单的形式,更关键的是在对于势能虚部的定量描述上也获得了明显的改进。