论文部分内容阅读
随着新型显示面板技术向超大面积和超高清方向的快速发展,开发低成本高性能器件印刷制备技术成为关键。印刷银电极材料具有高电导和低成本等优势,结合金属氧化物薄膜晶体管(MOS-TFT)高迁移率、低工艺温度和大面积均匀的优点,可以满足显示行业对低成本、低阻抗和低信号延迟的迫切需求。因此,研究印刷高导银电极MOS-TFT对推动显示行业技术的发展具有重要意义。本论文通过薄膜表面形貌调控、器件界面设计和工艺优化,突破了打印银电极与MOS-TFT的工艺兼容和界面接触不佳等难点,获得了高性能打印银电极MOS-TFT器件,并探索了高精度电极新型打印工艺。主要研究成果如下:(1)研究了固化工艺对喷墨打印银电极薄膜表面形貌的影响,利用银纳米颗粒对紫外(UV)光的强吸收作用,获得了表面起伏小的大面积高均匀性打印银薄膜。研究表明打印银电极的多孔结构易导致高能溅射绝缘层粒子向电极内部扩散,造成银底栅器件绝缘层有效厚度减少和缺陷态增加,导致绝缘层沉积质量下降。通过在栅电极和半导体之间引入PVP有机阻挡层,部分修复了打印银电极表面多孔结构,减小了表面粗糙度,保证了后续绝缘层薄膜沉积质量。制备的打印银栅电极非晶氧化铟镓锌(a-IGZO)TFTs器件迁移率达到2.92 cm2V-1s-1,开关比超过106。(2)研究了打印颗粒型银电极与半导体层的界面接触特性,发现银纳米颗粒有机包覆、墨水溶剂侵蚀以及高温退火是导致银电极器件性能恶化的三个重要因素,而且溶剂侵蚀会加剧电极扩散现象。通过对电极打印工艺的优化,实现了银纳米颗粒对有机包覆层的破除,所制备的打印银源/漏电极a-IGZO TFTs器件迁移率为0.29 cm2V-1s-1,开关比超过105。采用引入PVA中间层的新方法,提升了绝缘层和半导体的可靠性,抑制了银电极的扩散,器件迁移率达到3.36 cm2V-1s-1,开关比达到106,亚阈值摆幅为0.29 V/decades。(3)研究了有机物含量较少的醇溶剂体系前驱体(MOD)银墨水与半导体层的接触特性,发现MOD银墨水对半导体和绝缘层侵蚀小且界面残留低。低温退火避免了银电极扩散,实现了器件迁移率为2.01 cm-2V-1s-1,开关比为0.4×107,亚阈值摆幅为1.28V/decades。研究还发现增加半导体层厚度有利于降低打印MOD银电极a-IGZO TFTs器件接触电阻。栅极偏压(VG)等于10 V时,随着半导体层厚度的增加,界面接触电阻从4065.3Ω·m降低至81.8Ω·m。X射线反射和原子力显微镜的结果表明接触电阻的降低归因于半导体层表面粗糙度的增加,提升了金属/半导体的有效接触。因此MOD银电极a-IGZO TFTs器件迁移率从2.01 cm2V-1s-1提升到6.23 cm2V-1s-1,开关比为6.85×107,亚阈值摆幅为0.37 V/decades,与真空溅射银电极器件性能相当,验证了打印电极对真空电极的替代潜力。(4)提出了一种高精度电极的新型沉积方式。针对喷墨打印直接图形化的精度和线条均匀性问题,提出了利用喷墨刻蚀(Inkjet Etching)技术可实现打印墨水溶质在刻蚀孔洞边缘的自组装均匀再分布过程。并基于银纳米颗粒墨水研究了纳米银环和短沟道阵列的动态形成过程,讨论了Inkjet Etching过程中相邻液滴排斥力的形成机制。指出相邻墨滴边缘高蒸发通量和沟道积累的聚合物产生的排斥力是限制墨滴相互靠近的主要因素。实现了高重复性稳定的纳米银环和短沟道结构阵列,且纳米银环的宽度仅为13μm,沟道长度仅为2μm,为提升压电喷墨打印的图形化精度提供了新的选择。