论文部分内容阅读
旋毛虫(Trichinella spiralis)是重要的食源性寄生线虫,其成虫寄生于宿主小肠黏膜内。幼虫能否侵入宿主肠黏膜,是旋毛虫感染宿主与致病的关键;然而,幼虫侵入肠黏膜的机制仍不清楚。形态学研究发现,侵入期幼虫的口孔并无齿(矛)状结构,因而,幼虫侵入肠黏膜并非单纯机械力作用,极可能是幼虫的蛋白酶介导了侵入过程。烯醇酶(enolase)是糖酵解过程的关键酶,也是一个多功能蛋白,在纤溶系统激活、肌肉再生、细胞应激、癌细胞转移及感染等过程中发挥重要功能。研究表明,烯醇酶参与了病原生物感染宿主的过程并发挥了重要作用。我们的前期研究发现,幼虫在与宿主小肠上皮细胞(IECs)共孵育后,旋毛虫烯醇酶基因(Ts-eno)的相对转录水平显著升高,旋毛虫烯醇酶(Ts ENO)的表达量明显增加;此外,在旋毛虫肠道感染性幼虫(IIL)的表面蛋白中也鉴定出了高丰度的Ts ENO;提示,Ts ENO参与了幼虫侵入宿主肠黏膜的过程,但尚不清楚Ts ENO在幼虫侵入过程中发挥作用的具体方式和分子机制。截至目前,已在多种病原体(细菌、原虫、蠕虫和昆虫)侵入宿主的过程中观察到烯醇酶结合宿主纤溶酶原(PLG),促进纤溶系统激活,加速病原体入侵的现象。纤溶系统不仅在血管内发挥作用,在组织液中也广泛分布。生理状态下,由于纤溶酶原激活物(PAs)与纤溶抑制物(PAI-1和α2-AP)相互制约,机体内纤溶系统维持凝血与纤溶之间的动态平衡,避免出现纤溶亢进(出血倾向)或血栓形成。研究提示,烯醇酶在感染过程中可作为PLG的受体,打破纤溶系统的动态平衡,促进纤溶系统激活,利用纤溶酶(PLM)靶向降解细胞外基质(ECM)的作用,协助幼虫侵入,但分子机制尚不明确。Ts ENO能否作为宿主PLG的受体?能否结合宿主组织液中的PLG并与之发生相互作用?Ts ENO打破平衡态纤溶系统、促进纤溶系统激活的分子机制是什么?Ts ENO是否具有促进幼虫侵入宿主的功能?是本研究关注的科学问题。本研究应用生物信息学技术,深入分析了Ts ENO的分子生物学特征,构建了Ts ENO的3D分子模型,并与已解析晶体结构的人PLG分子进行对接,明确了Ts ENO结合宿主PLG并发生相互作用的方式和分子机制;在对Ts ENO进行系统的生物信息学研究基础上,体外表达、纯化出重组的Ts ENO(r Ts ENO)和定点突变的重组Ts ENO(M-r Ts ENO),分别制备对应的抗血清;分析了Ts-eno在旋毛虫不同发育期的转录表达水平及Ts ENO的虫体组织定位;对r Ts ENO与宿主肠黏膜、PLG的结合能力进行了鉴定;分析r Ts ENO的酶活性,通过竞争性结合实验和PLG激活试验,验证了Ts ENO与PLG相互作用的分子机制;通过旋毛虫体外侵入细胞模型、动物试验和RNA干扰技术(RNAi),从多个层次和不同角度,正、反向反复验证了Ts ENO通过激活宿主纤溶系统协助幼虫入侵肠黏膜的科学假设。材料与方法1.旋毛虫种株、实验动物、表达质粒、菌株及细胞旋毛虫河南猪源分离株(T.spiralis,T1),昆明小鼠保种传代。实验动物为SPF级、雌性6周龄BALB/c小鼠,购自河南省实验动物中心。表达载体p QE-80L及大肠杆菌BL21均为本实验室-80℃冷冻保存。细胞为本实验室分离、原代培养的胎鼠小肠上皮细胞(IECs)。2.Ts ENO的分子生物学特征及与PLG结合能力的分析和实验验证应用生物信息学技术,对Ts ENO(XP_003371233)的分子生物学特征进行了系统分析;应用Signal P预测信号肽,使用I-TASSER构建Ts ENO的3D分子模型,采用SAVES及Super Pose评估和验证Ts ENO 3D分子模型质量,采用ZDOCK将Ts ENO与PLG(PDB ID:4DUR)进行分子对接,VMD、Lig Plot+(DIMPLOT)及PDBe PISA分析对接结果;明确结合关键位点后,使用I-TASSER构建定点突变的M-Ts ENO分子模型,对比分析关键位点突变产生的影响。将重组p QE-80L/Ts ENO、p QE-80L/M-Ts ENO转化入感受态大肠杆菌BL21(DE3)进行原核表达;Far-Western blot和ELISA检测r Ts ENO、M-r Ts ENO与PLG的结合情况;应用?-ACA,采用竞争性结合试验验证关键位点突变对结合的影响。3.Ts ENO促进纤溶系统激活的分子机制及实验验证应用VMD、Lig Plot+(DIMPLOT)及PDBe PISA分别分析Ts ENO、M-Ts ENO与决定PLG活性的关键色氨酸残基(Trp761)之间的相互作用;计算色氨酸残基(Trp761)在与Ts ENO、M-Ts ENO结合前后相互作用面积(2)、相互作用残基的溶液可及表面积(AASA)、溶剂化能(ΔiG)、氢键、二硫键及疏水相互作用的变化,测量并比较Trp761与其相互作用残基间的距离;测定纯化复性后r Ts ENO、M-r Ts ENO的酶比活力;应用PLG激活试验,观察r Ts ENO、M-r Ts ENO结合并激活PLG产生纤溶酶(PLM)的情况,观察PAs存在与否对r Ts ENO、M-r Ts ENO激活PLG产生PLM的影响,验证Ts ENO通过与PLG的活性决定残基(Trp761)发生相互作用促进纤溶系统激活的分子机制。4.Ts ENO在旋毛虫侵入宿主过程中的作用研究Real-time PCR分析Ts-eno在旋毛虫各期的转录水平,IFA检测Ts ENO在虫体的定位;Far-Western blot检测肌幼虫(ML)排泄分泌抗原(ES)与PLG的结合;IFA检测r Ts ENO与小鼠肠黏膜组织特异性结合;应用旋毛虫幼虫-IECs体外侵入模型,观察不同浓度r Ts ENO、不同稀释度的抗r Ts ENO血清对旋毛虫幼虫体外侵入IECs单层的促进及抑制作用;设计、合成特异性靶向Ts-eno的小干扰RNA(si RNA),使用电穿孔法导入旋毛虫幼虫体内,应用Western blot检测si RNA对Ts ENO表达水平的抑制情况,通过RNAi反向验证Ts ENO在幼虫侵入过程中的功能;应用r Ts ENO免疫60只BABL/c小鼠后,将旋毛虫肌幼虫以300条/鼠的剂量感染BALB/c小鼠,分别于感染后第5 d和42 d,收集肠道成虫和肌幼虫,统计回收虫数、减虫率、肌肉虫荷(LPG)和生殖力指数(RCI),分析r Ts ENO免疫小鼠后对幼虫侵入的影响,验证Ts ENO在幼虫侵入肠黏膜过程中的功能。5.统计学分析应用IBM SPSS 21.0统计分析软件包对结果数据进行统计学描述、假设检验及图表绘制,检验水准设定为α=0.05。结果1.Ts ENO的分子生物学特征及其与PLG结合的关键位点确定切除信号肽的Ts ENO长473 aa,约51.95 k Da;Ts ENO与常见寄生虫烯醇酶的序列一致性为62.09%~98.91%,具有烯醇酶家族特征性MOTIF,结构域、金属结合位点、激活位点和底物结合口袋呈现高度保守特征。Verify 3D发现Ts ENO分子模型82.24%残基的3D-1D评分≥0.2,ERRAT计算出Ts ENO的全局质量因子为90.753,拉氏图显示Ts ENO在允许区域内分布的残基占比为98.8%。Super Pose三维结构多重比对结果表明,Ts ENO的结构与5种已解析晶体结构的寄生虫相关烯醇酶(3QTP、1OEP、4G7F、3OTR和5WRO)高度一致;在碳骨架和全分子的均方根偏差(RMSD)最大仅分别为2.03和2.18。Ts ENO和PLG具有结构互补性,赖氨酸残基(Lys90、289、291和300)在结合时发挥关键作用,其中Lys90与PLG的Ser383形成氢键。Ts ENO与M-Ts ENO在碳骨架和全分子间的RMSD仅分别为2.63和3.30,但将M-Ts ENO与PLG对接时,M-Ts ENO出现在相互作用面上的赖氨酸残基仅有Lys116。Far-Western blot发现,r Ts ENO、M-r Ts ENO均能特异性结合PLG,但相同条件下M-r Ts ENO的识别条带明显弱于r Ts ENO。ELISA表明,与r Ts ENO相比,M-r Ts ENO的PLG结合能力明显下降,下降幅度最高达45.37%。不同浓度的ε-ACA均能与r Ts ENO或M-r Ts ENO竞争性结合PLG,ε-ACA的竞争性抑制作用具有随浓度升高而增强的线性趋势(Fr Ts ENO=3532.392,FM-r Ts ENO=3499.730,P均<0.01);不同浓度ε-ACA对r Ts ENO的竞争性抑制作用显著高于M-r Ts ENO(t=3.411,P<0.05)。浓度为25 mmol/L时,ε-ACA对r Ts ENO、M-r Ts ENO的竞争性抑制率分别为64.25%和33%。2.Ts ENO促进纤溶系统激活机制的分析与验证对Ts ENO-PLG蛋白复合物的分析发现,Ts ENO的Glu303与决定PLG活性的关键残基Trp761间的平均距离为7.28 1.60,二者可以通过疏水相互作用结合在一起,Glu303与Trp761在结合时的埋入面积(ABSA)分别为33.97 2和29.55 2,ΔiG依次为-0.24 kcal/mol和0.47 kcal/mol。Trp761与M-Ts ENO(Glu303Ala)的Lys90、Ser91,以及与M-Ts ENO(Lys90 Ala、Lys289Ala、Lys291Ala和Lys300Ala)的Phe48、Tyr93之间,均存在疏水相互作用;Trp761与Lys90、Ser91之间的距离分别为5.35 0.43和7.27 1.41,与Phe48、Tyr93之间的距离分别为5.57 0.51和6.76 0.84。单因素方差分析表明,Trp761与不同相互作用残基之间距离的差异具有统计学意义(F=10.546,P<0.01);根据相互作用残基间的空间几何构型,Trp761(PLG)在与Glu303(Ts ENO)相互作用时产生的空间位移最大(7.28);互作产生的位移在一定程度上减少了Trp761对PLG底物结合口袋(由催化残基His603、Asp646和Ser741组成)的物理阻挡,有利于PLG的激活。Ts ENO催化糖酵解途径中2-PGA PEP反应的活性位点(Glu246、Lys382)在突变前后均未出现在与PLG的相互作用面上。在37℃、p H=7.5的反应条件下,r Ts ENO和M-r Ts ENO催化正向反应(2-PGA?PEP)时的酶比活力分别为36.77 20.22 U/mg和34.63 16.86 U/mg,逆向反应时依次为16.73 10.70 U/mg和17.20 13.82 U/mg;r Ts ENO和M-r Ts ENO催化正向反应时(2-PGA?PEP)的Km值分别为0.78 mmol/L和0.80 mmol/L,最大反应速率Vmax分别为0.42μmol/min/mg和0.40μmol/min/mg。含有Mg2+的缓冲体系可使r Ts ENO和M-r Ts ENO达到最佳酶催化活力,Zn2+、Mn2+、Fe2+和Cu2+的促进作用不及Mg2+,K+、Ni2+、Al3+、Ca2+和Li+对该酶促反应仅有非常微弱的启动作用,而Cr3+则对r Ts ENO和M-r Ts ENO的酶活性具有完全的抑制作用。PLG或t-PA单独与r Ts ENO、M-r Ts ENO、肌幼虫可溶性抗原或ES抗原相互作用时,各组OD405值之间的差异不具有统计学意义(FPLG=1.355,Ft-PA=1.013,P均>0.05);当PLG与t-PA共同存在时,t-PA可以激活PLG并产生PLM,添加不同的蛋白后,各组OD405值之间的统计学差异具有显著性(FPLG+t-PA=344.875,P<0.05);r Ts ENO、M-r Ts ENO、肌幼虫可溶性抗原和ES抗原均明显地促进PLG的激活、增加PLM的产生量(P<0.05);其中以肌幼虫可溶性抗原的促进作用最强,随后依次为r Ts ENO、M-r Ts ENO和ES。3.Ts ENO在旋毛虫侵入IECs单层及肠黏膜过程中的作用Real-time PCR结果表明,Ts-eno在旋毛虫肌幼虫(ML)、肠道感染性幼虫(IIL)、3 d成虫(3 d AW)、6 d成虫(6 d AW)和新生幼虫(NBL)均转录,以ML期相对转录水平最高(F=7.878,P<0.05)。IFA检测发现,Ts ENO在ML、6 h IIL、24 h IIL、3 d AW、6 d AW和NBL各发育期均表达,主要定位在杆状体、表皮及胚胎中。Far-Western blot证实,ES抗原中包括特异性结合PLG的52 k Da蛋白;IFA结果表明,r Ts ENO可以与小鼠肠黏膜组织特异性结合。体外侵入实验表明,不同浓度r Ts ENO组幼虫侵入数均高于PBS对照(t2=4.564,t4=7.920,t6=24.588,t8=19.100,t10=30.237,P均<0.05),幼虫侵入率具有随r Ts ENO浓度升高而增加的趋势(F=410.744,P<0.01);抗r Ts ENO血清对幼虫侵入的抑制率最高达51.26%,抑制率具有随血清稀释倍数增加而降低的趋势(F=557.494,P<0.05)。使用si RNA-97干扰幼虫可使Ts ENO的表达量降低53.56%,对幼虫侵入IECs单层造成的抑制率为49.82%。以r Ts ENO免疫BALB/c鼠后,5 d成虫减虫率为31.79%,42 d肌幼虫减虫率为47.15%;r Ts ENO免疫组的LPG及RCI均低于佐剂组和PBS对照组(FLPG=39.375,FRCI=46.533;P均<0.01)。结论1.旋毛虫烯醇酶(Ts ENO)的4个赖氨酸残基(Lys90、289、291和300)在Ts ENO与宿主纤溶酶原(PLG)结合时发挥重要作用。2.Ts ENO 4个赖氨酸残基的定点突变,导致M-r Ts ENO与PLG的结合能力显著降低;在与t-PA共同存在时,r Ts ENO能明显地促进PLG激活。3.重组Ts ENO具有促进幼虫侵入的功能,可诱导产生特异性免疫保护;Ts ENO是旋毛虫侵入宿主肠黏膜时的重要蛋白,可能是研制新型抗旋毛虫疫苗/药物的候选靶标。