论文部分内容阅读
结晶性聚合物尼龙66(PA66)的酰胺基团之间存在牢固的氢键,因而其结晶度和熔点较高,具有优异的力学性能,良好的耐腐蚀性、耐磨性、耐热性和自润滑性等优点,所以被广泛应用。但是纯PA66又具有干态和低温耐冲击性能差、吸水性大等缺点,使用受到了一定的限制。将尼龙与聚烯烃共混改性可有效改善以上缺点,其中乙烯-1-辛烯共聚物(POE)是尼龙抗低温增韧改性最有效的热塑性弹性体增韧剂之一。关键问题是要解决非极性的POE与强极性的尼龙之间相容性差的问题。本文采用的方法是先在POE分子链接枝上能够和PA66分子链末端的胺基或酰胺基反应的极性小分子衣康酸(ITA),此接枝物和PA66熔融挤出的过程中发生原位增容反应,生成接枝或嵌段共聚物,加强了两相界面间的粘接力,细化了分散相(POE)的尺寸,扩大了分散相在连续相中的分布范围,使得尼龙共混物韧性得到显著的改善。本文采用熔融挤出法,在双螺杆挤出机中,制备了ITA接枝POE(POE-g-ITA)。红外光谱分析和化学滴定法表明,ITA确实已经以化学键接枝到POE大分子链上。研究了单体ITA含量、引发剂过氧化二异丙苯(DCP)含量及螺杆转速等工艺条件对接枝反应的影响。最佳工艺条件为:POE/ITA/DCP=100/2/0.25,螺杆转速200r/min,反应温度180℃。为与PA66/POE-g-ITA共混物性能做对比,制备了PA66/POE-g-MAH共混物。在PA66/POE-g-MAH共混物中,POE-g-MAH含量为10wt%-15wt%时,共混物发生了脆-韧转变;POE-g-MAH含量为20wt%时,共混物的悬臂梁缺口冲击强度为83.3kJ/m2,比纯PA66提高18.5倍,达到了超韧化的目的。SEM照片表明,POE-g-MAH对PA66具有显著的增容增韧效果。随POE-g-MAH含量的增加,共混物的缺口冲击强度显著增大,拉伸强度、弯曲强度和弯曲模量均有一定的下降,断裂伸长率变大,熔体流动速率降低,吸水率明显下降。POE-g-MAH接枝率在0.05%-0.2%时,共混物发生了脆-韧转变;随POE-g-MAH接枝率的增加,共混物的缺口冲击强度增大,拉伸强度、弯曲强度和弯曲模量变化不大,断裂伸长率变大,熔体流动速率下降,吸水率基本不变化。接枝物POE-g-ITA中ITA含量、DCP含量以及制备接枝物时螺杆转速均对PA66/POE-g-ITA共混物的力学性能、熔融指数、吸水率产生影响,各影响因素的最佳取值范围为:ITA含量1-2wt%,DCP含量0.1-0.25wt%,螺杆转速200-300r/min。在PA66/POE-g-ITA共混物中,当POE-g-ITA含量在15wt%-20wt%时,共混物发生了脆-韧转变。当POE-g-ITA含量为20wt%时,共混物的悬臂梁缺口冲击强度为84.8kJ/m2,比纯PA66提高18.8倍。随POE-g-ITA含量的增加,共混物的缺口冲击强度显著增大,拉伸强度、弯曲强度和弯曲模量均有一定程度的下降,断裂伸长率变大,熔体流动速率降低,吸水率明显下降。制备的PA66/POE-g-ITA共混物比PA66/POE-g-MAH共混物所产生的综合性能高,且PA66/POE-g-ITA共混物的力学性能可与Du Pont的超韧尼龙Zytel ST 801相媲美。SEM照片和Molau相容性实验表明,POE-g-ITA对PA66具有显著的增容和增韧效果。随POE-g-ITA含量的增加,PA66/POE-g-ITA共混物的冲击韧性增大,分散相粒径减小,两相相容性变好。共混物中发生了原位增容反应,产生的PA66-ITA-g-POE接枝或嵌段共聚物,在共混物界面充当乳化剂,抑制分散相粒子的聚集,降低界面张力,使分散相粒径变小,从而使两相界面之间的相容性和粘结力增强,分散相在基体中的分散程度提高。本文还利用Friedman、OFW和Kissinger三种Model-free分析法,计算了SEBS在交联剂BPO引发下的化学交联的初始动力学参数,由前两种方法可得出SEBS交联过程经过了三步反应,且每步反应的活化能依次减少。由Model-free分析法预处理结果得到了三步连串反应模型,然后采用Model-fitting分析法,利用多元非线性回归得到精确的动力学方程的参数值。应用获得的动力学模型可预测不同温度下的交联度,说明可通过选择合适的交联温度和反应时间来控制SEBS的交联程度。