论文部分内容阅读
杆件结构在实际工程中应用广泛,如框架结构、大跨空间结构、桥梁结构等。该类结构的力学行为主要包括:几何非线性行为、材料非线性行为、静动力行为、节点半刚性行为、断裂行为、接触碰撞行为等以及由以上行为构成的复合行为,如结构的局部破坏或连续性倒塌破坏等。现有数值计算方法准确处理单一结构力学行为已是一项困难的工作,若在此基础上再耦合多种行为会变得更加复杂。因此,为了对结构力学行为进行简单而精确的描述,本文以杆系离散单元法为分析手段,发展了适用于杆件结构的接触单元(如杆单元、梁单元等),提出了一系列杆件结构力学行为的定量化模拟计算方法,包括弹性行为、弹塑性行为、强震倒塌模拟、半刚性节点模拟等。现有研究成果中均假定杆系离散单元法中接触本构模型的切向弹簧仅用于描述纯剪力引起的纯剪切变形,然而杆件结构通常长细比较大,可忽略剪切变形的影响,即根据弯曲梁理论认为切向位移(即挠度)是由剪力产生的弯曲变形引起,并非由剪力产生的截面剪切变形引起。因此,基于上述假定推导出的接触单元切向接触刚度系数无法用于杆件结构问题的求解。本文针对该问题重新定义了切向弹簧,并根据能量等效原理系统推导了各方向上接触刚度系数的计算公式。以此为基础,详细阐述了杆系离散单元的基本假定和概念,推导了面向轴力杆单元、平面梁单元以及空间梁单元的杆系离散单元基本公式,为复杂结构力学行为模拟提供严谨的理论支撑。杆系离散单元法中几何非线性问题和动力响应的求解会自动包含在颗粒的运动控制方程中,是一个自然过程,无需特殊处理。基于此特征,文中构建了杆件结构静、动力弹性行为分析的统一计算框架,进一步细化了杆系离散单元模拟结构弹性行为时遇到的问题。详细给出了静、动力荷载的施加方式,并构造了动力荷载下杆系离散元的阻尼模型。对若干二维、三维杆件结构进行静、动力弹性非线性行为分析,这些行为包括几何大变形、大转动、阶跃屈曲、分叉、动力响应等,验证了杆系离散单元模拟杆件结构静、动力弹性非线性行为的优势及有效性。对于材料非线性问题,本文基于杆系离散单元塑性铰法提出了杆系离散单元精细塑性铰法,该法通过切线模量和截面刚度退化系数近似考虑残余应力对接触单元刚度的削弱。分别建立了两种杆系离散单元弹塑性分析方法的计算理论,包括屈服准则、弹塑性接触本构模型、加卸载准则以及内力超过极限屈服面后的修正方法。若干算例(包括桁架、简单梁、平面框架、空间框架以及单层网壳结构)的静力弹塑性行为分析表明,杆系离散单元精细塑性铰法可近似考虑构件的塑性发展,其计算精度明显高于塑性铰法,且不会显著增加杆系离散单元的计算量;当材料为理想弹塑性、截面分布塑性不明显时,相比于塑性区法,采用杆系离散单元精细塑性铰法“性价比”更高。为了定量化精确求解多点激励下大跨空间钢结构的倒塌破坏问题,提出了结构多点激励强震倒塌分析的杆系离散单元计算方法。建立了可考虑地震作用应变率效应的弹塑性接触本构模型,实现了杆系离散单元法的多点激励,初步建立了杆系离散单元法的并行计算技术。以一个缩尺比为1/3.5的单层球面网壳振动台试验模型为计算对象,完成了多点激励下结构的倒塌破坏全过程定量化精确仿真。此外,该倒塌试验也可用于标定杆系离散单元法进行结构连续性倒塌分析时所采用的关键结构参数。进一步对梁柱节点的半刚性行为进行模拟,提出了一种能够有效进行具有半刚性节点的钢框架结构静、动力分析的杆系离散单元计算方法,并推导了可考虑半刚性连接的弹塑性接触本构模型。该法可同时考虑结构的几何非线性、材料非线性以及梁柱节点连接的半刚性非线性。梁柱节点的半刚性行为通过虚拟的弹簧单元进行模拟,该弹簧单元以线性分配的方式将梁柱节点的半刚性特性量化到与之相邻的接触单元各方向刚度,进而根据能量等效原理得到了上述接触单元刚度的修正公式,并通过独立强化模型捕捉结构的滞回性能。通过多个经典算例验证了所提方法的正确性和适用性,且系统研究了半刚性连接钢框架的几何非线性、阶跃屈曲、材料弹塑性、动力响应、断裂等多种结构力学行为。通过理论推导、大量经典数值算例、大型振动台试验校核以及程序编写表明,杆系离散单元法具有较强的精确性、通用性和稳定性。本文实现了杆件结构研究领域中诸多非线性和非连续结构力学问题的定量化仿真与分析,完善和推进了杆系离散单元法理论体系的形成,为杆件结构的复杂力学行为研究提供了强有力的技术支撑和手段。同时,杆系离散单元法作为一种崭新的数值分析方法,要将其推向实际工程应用或设计人员仍存在很多可改进和开发的空间。综上,本文的主要创新点如下:(1)文中重新定义了杆系离散单元法中接触本构模型的切向弹簧,并严谨推导了面向轴力杆单元、平面梁单元以及空间梁单元的各方向上接触单元刚度系数的计算公式,进而将杆系离散单元法的计算理论系统化;(2)提出了杆系离散单元精细塑性铰法,其可近似考虑构件的塑性发展,补充了杆系离散单元法的弹塑性计算理论;(3)多点激励下单层球壳强震倒塌破坏全过程定量化精确仿真的振动台试验校核。从计算方法、地震动多点输入荷载施加及计算效率三方面对杆系离散单元的计算理论进行修正,提出了结构多点激励强震倒塌分析的杆系离散单元计算方法,有助于该法在结构连续倒塌模拟中的推广和应用;(4)提出了一种能够有效进行半刚性钢框架结构静、动力分析的杆系离散单元计算方法,该法可同时考虑结构的几何非线性、材料非线性以及梁柱节点连接的半刚性非线性。杆系离散单元法中零长度弹簧单元并不直接参与计算,且修正后的接触单元刚度矩阵可直接代入下一步计算,过程简单易行。研究成果进一步体现了杆系离散单元法处理强非线性和非连续问题的优势。