矩形件下料优化算法研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:love4898
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
生产下料广泛存在于钢铁、皮革、木料加工、玻璃切割等工业生产中,因此对原材料优化下料成为企业节约生产成本的关键技术环节。由于下料问题本身是NP难问题,不存在有效的精确解法。对两类典型的矩形件下料问题,即“非一刀切”式下料和“一刀切”式下料,分析其技术难题,分别提出了两个有效的启发式算法。首先,提出一般优化下料问题的数学模型,并分析其技术难题。其次,提出本文要解决的“非一刀切”式下料问题的数学模型。基于将当前和长远利益相结合的启发式思想,提出一种启发式排放算法。该方法,首先对当前的可排放位置(水平线),用贪婪算法从未排矩形件中选择可排放于该水平线的最优矩形件组合块;然后根据各个排放位置与其对应的矩形件组合块的匹配程度,选择最优的可排放位置(最优水平线)优先排放。在排放时,为了便于后续排放,先将待排放位置对应的矩形件组合块从低到高进行排序,再排放。对一类大规模实例进行计算,取得了较好的排样效果。最后,对“一刀切”式矩形件排样问题,提出一种将启发式递归与免疫克隆算法相结合的混合优化方法。该方法,首先提出一种启发式递归算法,利用该算法逐次生成利用率最高的条料,直到所有矩形件均生成条料;然后利用免疫克隆算法全局搜索能力强的特点,对这些条料序进行搜索重组,使其所用的板材数最少,即使总的板材利用率达到了最大。对两个典型算例进行计算,并与相关文献比较,表明了本文算法的有效性。
其他文献
图染色是图论研究中的重要问题和热点之一,有重大的理论价值和应用背景.1976年,Stahl在顶点染色的基础上提出了k-重顶点染色概念.用G=(V, E)表示一个顶点集为V,边集为E的有限简
对流扩散方程是流体力学的基本方程之一.现阶段对于该类方程大部分难以求得精确解,因此数值解法的研究成为人们关注的焦点.常见的数值方法有:有限差分法,有限体积法和有限单元法
多带小波(M带小波)是近几年刚刚发展起来的小波分析理论的一个新的组成部分,它为人们提供了更大的小波选择范围,并为人们找到具有更好性质的小波函数,而这些性质是“2带”小波所不
近几年国内真人秀节目发展繁荣,这些真人秀节目在娱乐观众的同时,也能够对社会大众起到潜移默化的教育作用。本文将真人秀节目分成五大类进行了具体分析,然后对真人秀发展局
本学位论文研究的(d,1)-全标号源于以无线电为背景的距离2标号问题.用G=(V,E)表示一个顶点集为V,边集为E的有限简单无向图.G的k-d,1)-全标号定义为从集合V(G)∪ E(G)到{0,1,…,k)的
众所周知,在微分方程定性理论中,研究极限环的稳定性、存在性、个数以及它们的分布具有非常重要的实际意义和理论价值.对于确定次数的多项式微分系统,为研究其极限环的个数,人们
本文在经典的Fisher判别分析与核函数Fisher判别分析的基础上,依据Mercer核函数理论与多分辨率分析理论,参考尺度核支持向量机的做法,把Shannon尺度函数作为核函数或核函数的一
在众多的对称化工具中,Steiner对称化无疑是既简单却又最有用的一个。尽管Jakob Steiner提出Steiner对称化的初衷在于解决等周不等式问题,其作用却马上扩展到其它领域,比如经典