论文部分内容阅读
聚丙烯(PP)和聚乙烯(PE)是两种常用的聚合物,但由于自身存在的一些缺点,限制了二者的应用,将其与尼龙66(PA66)共混是目前常用的改性手段。但是PP和PE是典型的非极性聚合物,而尼龙66是极性聚合物,所以聚烯烃和尼龙66二者之间是热力学不相容体系,如何提高共混组分问的相容性是聚烯烃共混改性的关键,以功能化聚烯烃作为共混改性的反应性增容剂是当前普遍采用的增容技术。目前常见的增容方法是在共混体系中加入接枝共聚物,或者嵌段共聚物作为增容剂以改善体系的相容性,但是传统的以过氧化物为引发剂、以小分子单体为接枝物的聚烯烃熔融接枝途径存在有许多问题,如产物毒性大、气味大、共混物质量不稳定且强度损失大、加工环境污染严重等。为了改善这些缺点,本文合成了一种含有α-甲基苯乙烯(AMS)和反应性官能基团(GMA)的功能性低聚物,由于α-甲基苯乙烯(AMS)在共聚物中的存在,此共聚物在加热等条件下可以发生解聚以产生自由基,利用这种低聚物在加热时可以发生共价键的断裂从而产生自由基的特性,在不添加过氧化物引发剂的情况下,将其应用于聚丙烯和尼龙66(PP/PA66)以及聚乙烯和尼龙66(PE/PA66)共混体系,以期在此功能共聚物解聚过程中产生自由基,与聚烯烃在高温剪切作用下产生的自由基发生耦合反应,从而使功能共聚物上的反应性基团(本文中即为甲基丙烯酸缩水甘油酯上的环氧基团)接枝到聚烯烃分子链上,而接枝上去的基团即环氧基团可以与体系中的另一相PA66发生反应,从而达到反应性增容的目的和效果。本课题的主要研究内容包含有两部分:首先由以α-甲基苯乙烯(AMS)和甲基丙烯酸缩水甘油酯(GMA)为单体,通过溶液聚合的手段合成了二元功能性低聚物(PAG)。在此阶段的实验中,我们合成了不同单体配比的聚合物,分析了单体配比对单体转化率的影响,研究表明,单体转化率随着GMA含量的增大而增大,即AMS在聚合的过程中是不易聚合的,相反聚合物中的AMS是比较容易解聚的,这与本课题的研究依据是相吻合的。此外,我们对低聚物进行了相关测试与表征,如GPC,红外,核磁共振,热失重,TGA等,其中对低聚物的红外分析结果表明,实验中反应得到的聚合物确实是AMS和GMA的二元共聚物,核磁共振分析进一步证实了此结果,另外我们从核磁共振分析中也得到了不同单体配比所产生的共聚物中各单体所占的比例,即共聚物的组成,另外,对共聚物的TGA分析表明,共聚物的热稳定性随着共聚物组成中AMS含量的增加而降低,这也是对本课题理论依据的又一很好的证明。本课题研究的第二部分内容是将第一步合成的功能共聚物最为增容剂添加到聚烯烃/尼龙66共混体系,以增加体系中两相之间的相容性。本课题的创新之处在于不添加任何小分子的引发剂的前提下,将我们合成的低聚物PAG直接应用于PP/PA66和PE/PA66共混体系以达到增容的目的。我们将不同单体配比的PAG添加到共混体系中,同时也研究了在相同单体配比下不同PAG添加量对共混体系的增容效果。共混之后,我们对体系进行了SEM、Molua实验,DSC和力学性能分析。其中,SEM结果显示,低聚物PAG添加到体系中,大大降低了聚烯烃和尼龙66两相之间的界面能,分散相PA66的粒径尺寸显著减小,甚至在一些体系中,已经看不到两相之间的相界面,增容效果十分明显。Molua实验结果进一步证实了这一结论,两相之间因为有了PAG的加入而不能完全分离。DSC结果也表明,PAG的加入,使体系两相之间发生了相互作用,聚烯烃和尼龙66的熔融峰和结晶峰都发生了一定的偏移,而且尼龙66的结晶度也随着PAG加入量的不同而变化。另外力学性能测试结果说明,加入合适量的PAG可以有效地提高共混物的拉伸,弯曲和冲击强度。