论文部分内容阅读
随着科学技术的发展,人们对材料性能的要求日益增加。坡莫合金作为重要的软磁材料,在众多领域有着广泛的应用,但是纳米坡莫合金在空气当中无法稳定存在,限制了其应用范围。科学家们提出了用碳层包覆解决该问题的方法,碳包覆纳米坡莫合金结合了碳包覆金属纳米材料与合金材料的优点,有着区别于传统材料的巨大优势。用来制备碳包覆纳米金属材料的方法有很多,其中较为典型的有:高压电弧放电法(Arc)、化学气相沉积法(CVD)、热解法等。上述方法在碳包覆纳米材料的合成、研究方面取得了巨大的成就,但是这些方法普遍存在耗能高、仪器设备价值昂贵、无法连续合成、副产物难以分离、经济性差等问题,工业化生产前景较差,限制了碳包覆材料的实际应用。爆轰法作为一种合成方法,已经广泛用于纳米材料的合成,其中爆轰法合成纳米金刚石已经成功实现工业化生产,爆轰法具有反应速度快、耗能低、工艺参数简单、可大规模生产、经济性好的优点。本文分别利用炸药爆轰法与气相爆轰法进行了碳包覆纳米坡莫合金制备研究,从实验分析、性能检测、理论计算等多方面对炸药爆轰法和气相爆轰法合成碳包覆纳米合金材料进行了研究和讨论。采用现代化检验测试手段X-射线衍射仪(XRD)、具有EDS能谱的透射电子显微镜(TEM)、拉曼光谱仪(Raman)等,对材料的微观形貌及物相组成进行了表征研究;采用了震动样品磁强计(VSM)、矢量网格分析仪等对爆轰产物的软磁性能和吸波性能进行了研究。对炸药和气相爆轰合成分别利用数值模拟计算其爆轰参数,并利用高速摄影验证了计算的准确性;进而结合合金相图深入探讨了爆轰法合成碳包覆纳米合金材料的合成机理。主要取得以下成果:1)使用廉价易得的硝酸盐类作为金属的核心供体,分别采用乙醇和萘作为碳源,调整自制炸药成分,在炸药爆轰的驱动下,在爆轰压力容器中成功合成了成分均匀、核壳结构完整的碳包覆纳米坡莫合金。对所合成样品的研究表明,在炸药爆轰产物中出现少量的由碰撞导致的颗粒团聚与长大现象;纳米粒子金属核心的直径随着镍元素含量的增加而增大,碳壳层的厚度正比于前驱体中碳元素的含量。碳包覆纳米坡莫合金在室温下具有良好的超顺磁性,并且具有优良的电磁波吸收效应;碳层的包覆使纳米坡莫合金更易于表面改性,便于与高聚物均匀混合,是良好的电磁波吸收涂层材料。2)对于炸药爆轰合成,采用BKW状态方程与吉布斯最小自由能原理相结合,并且耦合合成产物的固体方程,根据爆轰的ZND模型,实现了对碳包覆纳米材料炸药爆轰合成参数的数值计算。以爆轰合成参数的计算结果为依据,结合碳金属二元合金相图对爆轰合成碳包覆纳米坡莫合金的机理进行了探讨。纳米坡莫合金的包覆层中的完整石墨层,一部分是来源于爆轰波后生成的活性炭簇,在铁、镍元素的催化下形成的;另一部分则源自于金属内部析出,即降温降压时金属溶碳量下降,会析出的高度石墨化的碳层;非球型的碳包纳米合金粒子来源于合金进入固相后的粒子碰撞聚合,来不及生长成为等轴晶粒而遗留下的。3)采用预加温汽化金属有机物的方式,分别利用氢氧爆源与乙炔氧爆源在气相爆轰管中成功合成出超细碳包覆纳米坡莫合金、碳包覆纳米超坡莫合金、碳包覆纳米铜铁合金。合成产物整体形貌相似,具有紧密的核壳结构,粒径为10nm左右,粒径分布均匀,为鲜有局部团聚现象的超细纳米颗粒。铜铁合金在铁原子占比30%时即出现完整的石墨包覆层;对碳包覆铁镍钼三元超坡莫合金的实验表明,Mo元素以稳定碳化物形式存在,不利于改善软磁性能,说明合成碳包覆超坡莫合金时应选用Cu掺杂。4)针对气相爆轰合成的参数计算的特殊问题,推导出混合有固体颗粒物的理想气体状态方程,并考虑初始压力、温度对爆轰参数的影响,以C-J爆轰理论建立气相爆轰合成理论模型并编程计算,并以高速摄影实验测量爆速进行了验证。对于文中气相爆轰实验工况进行爆轰参数的计算表明,爆轰合成温度在铁的沸点(2750℃)以上碳沸点(4827℃)以下。与固相炸药爆轰合成相比较,由于爆轰合成时金属处于气态并且空间含量很低,所以更易于形成超细纳米粒子。