高分子膜亲水改性研究及其在油水分离中的应用研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:kizanliu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
膜分离是一种高效清洁的油水分离技术。然而,在此过程中,仍然存在许多制约问题,其中膜污染是限制其发展和应用的重要因素。近年来,开发超亲水/水下超疏油膜材料成为膜分离含油废水技术的研究热点。因此,本文采用贻贝仿生法对高分子聚合物膜进行表面改性,在提高高分子膜亲水性的同时,还赋予改性膜优异的抗油污染性能。
  利用聚多巴胺(PDA)为中间媒介层,采用表面改性技术将氧化石墨烯(GO)固定在聚丙烯(iPP)中空纤维膜的表面,制得有机-无机复合膜(iPP@PDA@GO膜)。与未改性膜相比,iPP@PDA@GO膜水接触角降为0°,水下油接触角升为152°,具备了超亲水/水下超疏油性能。在油水分离应用中,用改性膜处理三种不同油水乳化液,考察改性膜的油水分离性能。iPP@PDA@GO膜的渗透通量高达188Lm-2h-1,油截留率也在99%以上。在经过300分钟循环测试后,改性膜的通量恢复率仍在90%以上。从SEM电镜图中也可以看出iPP@PDA@GO膜表面和膜孔内没有明显的油滴污垢存在,同时其机械强度也仍保持良好,表明该膜具有优异的抗油污染性能和可循环使用性能。
  利用聚多巴胺涂层为功能层,采用过硫酸钠(SP)氧化剂诱导多巴胺快速氧化聚合沉积在聚偏氟乙烯(PVDF)膜的表面,制得了PVDF@PDA@SP改性膜。相比于以空气作氧化剂制得的改性膜,PVDF@PDA@SP膜具备了优异的超亲水/水下超疏油性能,抗油粘附能力有很大增强,同时膜在强酸强碱环境中的化学稳定性也有了极大提高。处理不同油水乳化液时,PVDF@PDA@SP膜在0.04MPa的跨膜压力下,渗透通量高达1232Lm-2h-1,截油率也在99%以上,具有优异的选择透过性。5次循环油水分离测试后,PVDF@PDA@SP膜的通量恢复率大于90%,表明改性膜可循环使用性能优异。
  综上所述,这些实验结果都表明,以上改性方法在油水乳液分离和实际废水处理应用中将会具有巨大潜力。
其他文献
挥发性有机物(VOCs)不仅是大气主要直接污染物之一,也是PM2.5的主要前驱体来源之一。因此,对VOCs的防控已成为环保治理的一项重要任务。吸附作为VOCs治理应用最为广泛的技术,具有净化彻底、使用方便等特点。然而,作为吸附工艺的核心,吸附剂经常在使用过程中“失活”,导致吸脱附效率降低。  本文针对VOCs(以甲苯为例)吸附剂在工业应用中“失活”问题展开研究,探究变温、变压吸脱附工艺(水分、孔径
工业废水的大量排放造成的水污染问题在全世界范围内日趋恶化,是当前急需解决的环境问题之一。近年来随着各种高级氧化技术的发展,基于过一硫酸盐(PMS)的高级氧化法受到了广泛关注,相对于传统的Fenton体系,PMS具有更强的氧化能力以及更广的pH适用范围,因此极具应用潜力。在该反应中催化剂的作用十分关键,金属基催化剂催化活性较强,但是存在金属析出和二次污染等问题,因此,开发一种制备简单、成本低廉、催化
学位
新型可再生能源的开发、转化与储蓄技术是未来能源发展面对的关键技术问题。在目前的能源储蓄与转化技术中,电化学催化剂的开发和应用对于扩充电极的储存容量、扩大交换电流密度具有重要意义。其中,电解水制氢是能量转化过程中重要的电化学反应,同时是制备氢气这一极具潜力的未来能源的有效方法,受到了研究者的广泛关注。  本研究以镍基材料为基础和出发点,探究了镍基材料在电化学催化领域的应用。本研究的第一部分工作通过水
来源于可再生资源的聚乳酸(PLA)和聚(3-羟基丁酸酯-co-3-羟基戊酸酯)((PHBV)是目前商业化最为成功的生物基聚酯材料。PLA和PHBV原料可以从玉米、土豆和其他农产品等可再生资源中获取,不仅具有良好的生物相容性和生物降解性等环境友好特性,其物理性能也可与许多石油基塑料相媲美,如PLA具有优异的机械性能、热塑性和高透明度和生物相容性,PHBV具有优良的耐热性能和阻隔性能等。因此,PLA和
氯代烃是一类极为常见的土壤和地下水污染物,具有致癌、致畸、致突变等生物毒性效应。因此,如何高效降解氯代烃污染物受到越来越多的关注。本论文采用单宁酸(TA)活化过硫酸盐(PS)体系,并以氯仿(CF)和三氯乙烯(TCE)两种典型的氯代烃污染物为降解对象,评估活化体系的降解效果,探究和优化了影响降解反应的相关因素,考察了实际地下水中常见的干扰因素对降解效果的影响规律,主要研究内容如下:  (1)单宁酸与
学位
学位
全球人口数量迅速的增长加快了工业化和化石燃料的使用。化石燃料的利用为人类社会带来空前发展的同时,也导致了CO2的过量排放。人为的CO2排放量远超过自然碳循环所引发的温室效应,对气候和环境产生了极为不利的影响,是当今社会乃至后代的安全隐患。化学转化法在CO2资源化利用、温室气体减排以及解决能源危机等方面具有显著优势,尤其是介质阻挡放电等离子体技术,其凭借自身放电稳定和能量均匀的特点,可以在大气压条件
学位
大气中二氧化碳含量的增加导致了一系列的环境问题,备受人们关注。将二氧化碳电还原为高附加值的多碳产物是二氧化碳再利用的有效途径。在众多电催化剂中,铜基催化剂是唯一能将二氧化碳还原为多碳产物的催化剂。但是,目前铜基催化剂对多碳产物的选择性仍然较低。  本论文通过调控铜催化剂表面的关键中间体(*CO)吸附的方法来提高铜基催化剂对多碳产物的选择性。对铜表面*CO覆盖度的调控可以从两个方面进行,分别为调控*
学位
烟气中SO2的高效脱除及回收不仅对环境有益,还具有可观的经济效益,其难点在于SO2高效可逆捕集介质的开发。近年来,离子液体(ILs)因具有蒸气压低、稳定性高、可设计等特点,被认为是传统脱硫介质的理想替代物。然而,ILs复杂的制备流程及较高的成本限制了其大规模应用。故此,具有与ILs相似的性质,且制备简单、成本相对低廉的低共熔溶剂(DESs)成为了当下SO2捕集领域的研究热点。本文通过对组成的精细调
学位