【摘 要】
:
地面模拟放线系统被用于模拟某型光纤制导武器放线过程,以观测光纤的运动状态以及信号传输质量,而长距离收线装置是放线系统中的重要组成部分,其通过收线轮高速旋转实现拉拽并收集由线包解脱下的光纤。为模拟光纤随制导武器由发射到平飞阶段的运动状态,其容线槽区域内线速度需在规定时间内达到340m/s,最大线速度属于超音速,因此受离心载荷影响,易产生因刚强度不足带来的塑性破坏,同时由于在空气中高速旋转,收线轮对周
论文部分内容阅读
地面模拟放线系统被用于模拟某型光纤制导武器放线过程,以观测光纤的运动状态以及信号传输质量,而长距离收线装置是放线系统中的重要组成部分,其通过收线轮高速旋转实现拉拽并收集由线包解脱下的光纤。为模拟光纤随制导武器由发射到平飞阶段的运动状态,其容线槽区域内线速度需在规定时间内达到340m/s,最大线速度属于超音速,因此受离心载荷影响,易产生因刚强度不足带来的塑性破坏,同时由于在空气中高速旋转,收线轮对周围空气形成剧烈扰动,受到较大风阻,在空气阻力、离心载荷共同作用下,容易导致收线轮转动功率增大,受额定驱动功率限制,收线轮加速性能下降,将无法满足光纤运动状态的模拟要求。因此,本文针对超音速光纤收线轮的的上述问题,分别从结构、流体两方面对原有收线轮展开特性分析以及结构优化设计,以提高收线装置加速性能。主要工作如下:(1)收线轮力学性能分析及结构优化设计。根据收线性能要求,利用有限元方法对收线轮结构展开静力学分析,研究结构尺寸参数对收线轮质量、强度的影响,并采用响应面方法,以最小质量为目标、刚强度为约束条件对收线轮尺寸参数进行优化设计。(2)收线轮流场仿真模型建立。以尺寸优化后的收线轮为研究对象,分析并确定当考虑空气可压缩性时空气密度、黏度及导热系数等物性参数,建立流体力学计算模型,并对模型的网格划分、边界条件、边界层处理以及仿真方法等方面展开分析。(3)收线轮流场特性分析。针对收线轮风阻损失及其主要影响因素,对超音速工况下收线轮稳态流场的压力、速度分布特性进行了分析,并计算了收线轮风阻力矩及其损失数值。(4)收线轮降阻方案设计。通过在收线轮轴向两侧端面加装轮毂盖的方式降低收线轮风阻力矩,分析轮毂盖对收线轮风阻损失的影响,计算不同轮毂盖尺寸下收线轮在超音速工况中的风阻及其功率损失数值,继而确定轮毂盖最佳尺寸参数,得出收线轮最终结构。(5)收线装置轴系结构加速性能分析。计算了收线轮加速阶段的风阻力矩数值,经过拟合得到加速阶段的风阻力矩随时间变化关系,在此基础上对收线轮降阻设计后的收线装置轴系结构进行动力学仿真,得出轴系结构转动功率,以此判断轴系结构加速性能,并采用有限元方法对轴系结构的转动稳定性进行分析。
其他文献
近年来,随着我国大型装备领域快速发展,大型零部件精密制造与装配需求日渐增多,进而对制造与装配过程中涉及的大尺寸精密测量技术的要求越来越高。高精度大空间定位系统(Accurate Large-scale Positioning System,ALPS)作为一种新型的大尺寸测量设备,具有几米至几十米测量范围、多点并行以及亚毫米级定位等特点,逐渐替代传统的大尺寸测量设备,被广泛应用于大空间精密测量场合。
在军事作战中,战场信息瞬息万变,因此处理作战信息要满足超低时延的需求。移动边缘计算(Mobile Edge Computing,MEC)技术能够有效地解决上述问题,边缘计算可以支持侦察机器人实现低时延、低能耗的计算需求。但是,战场中对侦察机器人有较高的移动性要求且固定服务器基站容易被敌方损坏,位置固定的边缘服务器基站在该场景下的能力受限。考虑将边缘服务器安装到无人机(Unmanned Aerial
多旋翼无人机以其成本低廉、操作灵活以及智能化水平高等优势被广泛应用于侦察、监视、瞄准和战场损伤评估。准确地识别多旋翼无人机对于掌握战场主动权,提高未来指挥作战系统的性能和精确打击目标具有至关重要的意义。本文以多旋翼无人机为研究对象,对基于Yolov5的多旋翼无人机检测算法进行研究。论文的主要研究内容如下:1)针对现有样本质量水平较高的多旋翼无人机数据集较为稀少且难以获得这一现状,本文对从Kaggl
随着智能弹药在战场上的应用日益增加,随之对智能弹药前端复合探测器目标识别试验测试技术提出了更高层次的要求。由于智能弹药前端复合探测器安装位置特殊、实际应用环境复杂、样本数据易受试验条件限制等因素影响,导致目前试验测试方式无法准确测试出复合探测器性能和目标识别率。针对上述问题,本文设计了多波长复合探测器试验测试系统,为复合探测器试验测试提供一种半实物仿真试验方法,并对毫米波和红外复合探测目标识别技术
合成孔径雷达(SAR)由于其显著的高分辨率和全天候的成像能力,在民用和军用领域都有广泛应用。传统SAR的工作模式为侧视或斜视,不可避免地会带来阴影和层叠的问题。线性阵列合成孔径雷达(LASAR)通过在垂直航线向架设线性阵列,实现工作模式的转变-下视成像,克服了传统SAR工作模式所带来的问题。同时依靠线性阵列,获得了垂直航线向的分辨能力,从而实现三维成像。但是由于线性阵列尺寸有限,会存在垂直航线向分
干涉测量作为精密光学测量的重要组成部分,广泛应用于国防军工、航空航天、天文观测等领域系统元件测量,但由于激光光源的高度相干性,系统中光学元件表面缺陷、微小颗粒所产生的相干噪声会引入测量误差,因此在精密光学测量系统中抑制相干噪声就尤为重要。本文针对Fizeau干涉系统设计了一种利用光楔旋转产生的虚拟环形光源,实现相干噪声抑制,主要工作内容包括:(1)基于范西特-泽尼克定理,分析空间复相干度,研究环形
随着现代战争中融入了智能算法、虚拟现实等技术,智能化导弹技术与现代无人机技术相结合所诞生的巡飞弹等智能化弹药成为当前研究的热点。针对巡飞弹受弹载数据链通信距离、巡飞弹自身性能、战场天气以及雷达探测等约束条件的限制,在执行区域封控任务时需使用巡飞弹数量较多,造成一定资源浪费的问题,本课题通过提高巡飞弹集群封控效率,实现对封控区域的扩展。主要研究内容如下:(1)为提高巡飞弹集群的封控效率,对巡飞弹弹载
水面无人艇(USV,Unmanned Surface Vehicle)是一种能够自主运行的水面运载器,其需要具备与外界环境交互的能力。为了实现这一目标,无人艇需要具备路径规划和动态避障的能力,以应对各种可能出现的危险状况。在无人艇行驶过程中,不仅需要全局路径规划决策,还需要及时应对局部危险环境以避免事故,只有这样才能确保无人艇安全、高效、顺利地完成任务。因此,路径规划算法的可靠性和危险避障能力是无
无人机作为一种可以远程控制导航的无人驾驶飞行器,因其具有良好的可操作性和经济性,已被大规模应用于军事领域,但随着无人机执行任务的复杂程度不断提升,对其自主飞行能力也提出了更高要求,然而航迹规划作为无人机自主飞行的重要组成部分,决定着执行任务的成败。因此,本文主要以旋翼无人机作为研究对象,针对无人机在三维环境下基于改进麻雀搜索算法的全局航迹规划和基于改进人工势场法的局部航迹重规划问题展开研究。本文的
随着军事应用需求的增加和无人机性能和技术的提高,无人机在军事领域的应用范围迅速增大。因无人机的机动性好、灵活性强、部署容易等优点,而被广泛应用于侦察作战中。在多无人机协同侦察作战过程中,无人机电池容量和计算资源有限,处理任务时会产生过多的能耗和时延等问题。而利用云计算技术处理,不仅会造成的带宽资源浪费、数据信息传输时延和能耗过大、实时性不能得到更好的满足等问题。移动边缘计算(Mobile edge