基于量子逻辑综合的有效容错线路的研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:kkaJov2Qc88R
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来人类社会所产生的海量数据使得人工智能技术为制造业产能升级提供了强有力的支持。但与此同时,传统计算机的计算能力与存储性能也逐渐步入瓶颈,核心处理器的电路集成度越来越大,且因不可控制的量子效应导致计算失效。为了克服传统计算机目前的缺陷,在存储和计算等关键领域上重新思考并发明全新的颠覆性技术成为计算机研究领域的热点研究课题。近年来,利用量子力学规律所设计的量子计算机相比经典计算机具有更强大的存储与处理信息的能力,这种新型计算设备能够在某些逻辑运算任务上存在无可比拟的优势。本文围绕实现容错量子计算机的关键技术,结合了量子逻辑综合算法及神经网络方法,深入的研究了高效的容错量子纠错码转换电路的设计,通用容错量子计算方案的设计以及量子纠错过程的优化,具体包括以下内容:1.采用分段容错协议,为搜索纠错码上具有循环特性的逻辑控制Pauli-Z算子门设计了一种启发式搜索算法,并通过本文所设计的算法给出了一个5量子比特与Steane-7量子比特编码间的分段容错逻辑控制非门电路。其次,本文改进了该控制非门电路的常数稳定子的检错及纠错过程,保证该电路的纠错过程在分段容错协议下不会受到闲置量子位错误的干扰,从而使得该逻辑控制非门电路能够被建模为一个基本的容错组件,并被用于构造更大规模的容错逻辑量子电路。最后本文基于该容错逻辑门设计了这两种编码间的一种高效的容错转换电路。2.采用非均匀编码级联策略,设计了一种基于2层级联的25量子比特纠错码,在该编码上实现了一个分段容错逻辑T门,并据此提出一种低资源消耗的容错通用量子计算实现方案。其中,本文的容错逻辑T门电路包含了内层逻辑量子比特上的编码转换子电路,为了克服编码转换电路本身的低容错性,本文针对具有分段容错结构的量子电路设计了一种基于神经网络的解码器,并通过对逻辑T门电路的数值仿真实验验证了该解码器的有效性。3.研究了稳定子码的纠错过程,采用神经网络方法为一种资源消耗更少的诊断数据提取电路设计了解码器,并通过编码基态制备电路的数值仿真进一步验证了本文所设计的解码器能够有效提升该诊断提取电路的稳定性。4.研究了级联编码的解码过程,分析其不同级联层的诊断数据与错误扩散事件的关联性,本文采用神经网络设计了级联编码的解码器,并对25量子比特编码基态制备电路进行数值仿真以验证该解码器能够有效提升级联编码的伪阈值。
其他文献
超短脉冲光纤激光器因其输出脉冲具有极窄脉冲宽度、超高峰值功率、高重复频率以及良好的稳定性等特点,在光纤通信、激光雷达、消费电子、精密微加工、生物医疗、航空航天以及汽车制造等领域有着广泛的应用。近年来,随着新材料、脉冲整形新机理以及脉冲动力学新行为的持续创新发展,基于被动锁模的超短脉冲光纤激光器成为当前国际上的前沿研究课题之一,我国在该领域具备了较好基础并取得了丰硕科研成果,有望对传统产业和新兴产业
功率放大器(功放)的线性化技术是平衡功放效率与线性矛盾的关键。为了获得更高的传输速率,5G(第五代移动通信)系统采用了MIMO(多入多出)架构,且信号的频率提高,带宽增加,调制方式愈加复杂,峰均比进一步增大,这些复杂场景对线性化技术提出了更高的性能需求。模拟线性化器与数字预失真相比,实现方式更简单、工作带宽更宽、功耗和成本更低,但是传统线性化器在复杂场景中低下的线性化能力制约了其在通信系统中的广泛
休闲食品包装方式快速升级,开窗牛皮纸袋颜值与质感并存,深受广大消费者青睐。传统的纸张复合或开窗复合大部分由干式复合或挤出复合完成,少量由湿式复合完成,由于环保及成本的压力,纸张复合方式逐渐转向无溶剂复合,洲泰纸张开窗无溶剂复合机应运而生。洲泰开窗设备技术特点:大张力,便于纸张收放卷,避免收不紧;大卷径,收放卷卷径都可达
期刊
随着物联网技术及其相关应用的飞速发展,物联网终端用户对于计算和传输的需求也呈现指数级的增长趋势,此种发展趋势推动了新型计算范式——边缘计算的发展。在边缘计算中,边缘计算运营商将具有一定计算能力的边缘服务器部署于靠近终端用户的位置,用户将其计算密集型任务上传至边缘服务器,任务经过边缘服务器处理后,相关结果再返回至终端用户。通过这样的过程,任务的完成时间和终端用户的能耗都能得到显著降低。在此过程中,用
毫米波(Millimeter Wave,mmWave)频段频谱资源丰富、指向性强,可实现点对点的高速数据传输,故其被选为5G标准以显著提升系统容量。然而,mmWave路径损耗严重并且穿透能力差,这极大地制约了其实际应用。为了弥补mmWave的这些缺陷,催生出了多种mmWave传输辅助技术,最近发展起来的可重构智能表面(Reconfigurable Intelligent Surface,RIS)技
表面等离子体激元(SPPs)是外部电磁场与良导体材料中的自由电子的集体震荡相互耦合产生的一种激发态表面倏逝波,具有亚波长局域,表面场增强等特性。作为能产生SPPs的天然材料,金属最早出现在研究中,至今已有百余年历史。而金属产生的SPPs的作用范围在纳米量级,早期的加工技术无法使其投入实际应用。近年来,由于微纳加工技术的发展,SPPs再次成为研究的热点,被广泛运用于近场成像、化学生物传感、表面拉曼散
随着物联网的发展,传感器网络作为其感知世界的基础而将广泛存在,使电能供给面临挑战。基于电池的传统供电方式将给传感器网络的维护带来极大的时间和人力成本,从而难以适应未来的发展需求。随着传感器和无线通信的功耗降低,以及现代社会对射频技术的日益依赖,利用无线射频能量供电成为了一种具有前景的替代方案,整流天线作为其中的关键器件引起了国内外学者的关注。然而,目前存在两方面因素制约着无线能量采集的效率。一方面
随着未来移动通信需求的发展、高速率通信场景的增加,以及低频段资源的短缺,毫米波通信技术,由于其具有更多的频谱资源,更大通信带宽,并且能够有效的利用空间域的资源,越来越受到学术界和工业界的重视。因此,毫米波通信技术也成为了5G通信的重要技术之一。本论文从毫米波通信中实际存在的问题出发,首先研究了毫米波通信的信道特性、通过实际测量和大量经典文献的整理,基于前期研究的毫米波信道特性成果,使用不同的毫米波
无线网络技术正迈向与多领域的深度融合,逐步实现无时无处的智能连接、全息连接、深度连接与泛在连接。然而,由于无线网络的广播性及开放性,使得无线网络极易受到窃听以及干扰等恶意攻击。同时,微型无线终端设备的普及,使得这些微型终端的计算和能量都非常有限,基于传统的安全解决方案难以适用于无线网络的低功耗、低计算资源以及高吞吐率下的高安全需求。无线物理层安全技术的提出为解决这些安全问题提供了新的思路。物理层安