以高质量教育推动高质量发展

来源 :汕尾日报 | 被引量 : 0次 | 上传用户:datou19881020
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
随着核能与核技术的不断发展,世界各国都建设了大量的核反应堆和相关核设施。这些核反应堆与核设施在日常运行过程中会产生大量的放射性,会对相关工作人员和周围环境造成不可逆的危害。如何确保人员和周围环境安全,降低和减少工作人员所接受辐射剂量及环境中放射水平是核安全与辐射防护工作的主要内容。因而,需要了解反应堆与核设施周围的辐射场剂量分布情况,评估反应堆及核设施周围环境放射水平,确保工作人员在该环境下作业时
学位
氡是一种可对人体造成辐射危害的放射性气体,在通风条件差且拥有高浓度氡的地下实验室和地下工程,氡及其子体的危害不容忽视。在暗物质的研究上,氡及其子体是地下低本底实验室的重要放射性本底来源,作为惰性气体的氡气无处不在,难以屏蔽,氡及其子体衰变干扰暗物质测量。为满足中国锦屏地下实验室中开展暗物质探测实验对高效率的除氡技术的使用需求,本研究依据在低温条件下能增强活性炭对氡吸附能力的基础上,构建了一种利用空
学位
:核聚变作为一种绿色、可持续的能源产生方式受到了广泛的研究和关注。其中,质子硼聚变等无中子核聚变因为具有电能转化效率高和没有中子辐射等优势,成为了近年来研究的热点。然而,因为无中子核聚变的末态产物不包含中子,所以难以使用中子能谱诊断聚变等离子体离子温度。本文提出利用核共振荧光(NRF)谱学开展无中子核聚变等离子体离子温度的超快诊断。论文研究了用于驱动NRF反应的准直超亮伽马源。采用PW激光辐照微米
学位
氡气是自然界的稀有放射性气体之一,无色无味,目前研究领域上有多种测量氡气的方法,液体闪烁体具有无自吸收、衰减长度长、对氡的溶解度较高等特点,是用于测量氡气的探测器材料之一。然而,液体闪烁体氡测量方法往往需要进行溶解样品,取样测量等操作,存在工序复杂、测量不够便捷等问题。为解决上述问题,本文设计了一种新型液体闪烁体氡测量探测器探头,通过热焊技术将一层疏水疏油透气膜焊接在液体闪烁体容器上,实现环境氡气
学位
近年来,随着世界各地放射性束流装置的建成或即将建成,这为人们研究质子滴线附近奇异核的性质和结构提供了良好的平台,使得质子滴线附近奇异核的相关研究成为当今核物理领域的热门话题。质子、双质子放射性作为两种主要的奇异衰变模式,它们在确定滴线核、探究滴线核形变、核半径、以及对应的核结构等具有重要意义。本文基于液滴模型并考虑壳修正,提出了一个简单且准确的经验公式去计算了 29个基态核的质子放射性衰变能;基于
学位
快中子脉冲堆因其辐射场可以较好模拟高空核爆炸辐射环境,通常被选做实验室核爆模拟辐射源,对核武器电子学系统、辐射生物学等研究有重要意义。快中子脉冲堆能够在超瞬发临界状态下运行,产生可控中子与γ脉冲。快中子脉冲堆爆发脉冲时,依靠“膨胀自熄灭”机制进行反应性控制,脉冲时间通常为微妙量级。脉冲爆发时堆芯裂变率迅速变化,如果堆芯热应力冲击大于材料的屈服极限,会对堆芯造成损坏。因此,为了分析快中子脉冲堆的安全
学位
核辐射探测仪器广泛用于核电站,保障核电安全运行;核电站的核测控系统作为弱电信号处理系统,易受到外界的电磁干扰影响,导致设备的输出信号异常;而且对于新型反应堆,配置了大量电气设备,导致核电运行环境面临的电磁环境更加复杂,对核电设备运行维护产生困扰,严重情况下可能影响电厂效率。本文将探索在核辐射探测设备上集成电磁场测量功能,来对核探测装置所处环境进行电磁监测。NB-IoT是物联网领域的一个新兴技术,其
学位
近年来,由于小型模块化反应堆具有厂址要求低、应用灵活、核安全风险低等优点,使得其设计建造成为国家核设施发展的一个重要方向,其发展逐渐成为国内外研究热点。在核工程设计中,尤其是对于船舰堆、空间堆等这类小型堆而言,屏蔽结构的设计优化是其重要组成部分,也是保证反应堆经济性与安全性的关键环节。但由于核装置的复杂性和屏蔽设计目标的多样化,在减少人因等不确定因素影响的前提下,实现一种针对小型反应堆辐射屏蔽设计
学位
分析全脑全脊髓(Craniospinal irradiation,CSI)放疗固定野调强(Intensity-modulated Radiation Therapy,IMRT)计划和容积旋转调强(Volumetric Modulated Arc Therapy,VMAT)计划的剂量学差异,并对两组计划验证的伽马通过率进行分析。研究选取2019年4月至2020年11月接受全脑全脊髓放疗的12个病例,
学位
利用BESⅢ在3.05-3.12 GeV能量区间采集的亮度约为100 pb-1的能量扫描数据,本文测量了该能区下J/ψ→Σ+Σ-的截面并研究了J/ψ→Σ+Σ-过程的强相互作用振幅和电磁相互作用振幅之间的相对相位,得出其相对相位为(96.9±16.2)°或-(96.8±15.8)°。这是首次使用产生截面谱测量J/ψ衰变到超子-反超子对过程的强相互作用和电磁相互作用振幅之间的相对相位,与基于SU(3)
学位