我的三份入党申请书

来源 :中国黄金报 | 被引量 : 0次 | 上传用户:bear_flysky
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
其他文献
在过去的三十年中,特征选择作为一种维数约减技术,一直是机器学习领域的研究热点之一。传统的特征选择算法由于仅基于特征与类属性之间相关性,可能导致预测分类模型缺乏可解释性、可操作性和鲁棒性。因果特征选择是发现类属性的贝叶斯网络(Bayesian network,BN)的子结构,即马尔科夫毯(Markov blanket,MB),该MB由类属性的父母(直接原因),孩子(直接结果)和配偶(直接结果的其他直
工业控制网络系统是实现工业生产自动化的关键,是衡量国家工业水平的重要指标。随着物联网、大数据、智能技术的发展,其安全运行已成为国家安全战略的重要组成部分。可信计算已经成为国际信息安全领域的一个重要分支,吸引了全球众多学者的关注和研究。本文的主要工作和贡献有:(1)首先分析了工业控制网络系统的安全现状和安全需求,研究了可信工业控制网络系统的实现技术,提出一种可信工业控制网络系统体系结构。划分可信工业
近些年来,由于汽车自动驾驶技术能较好地解决因驾驶行为不当、疲劳驾驶、疏忽大意或违章行驶等人为失误引起的交通安全问题,其已成为全球汽车行业关注的焦点。同时,传感、信息以及人工智能等相关技术的迅速发展,为自动驾驶技术的实际应用提供了良好的软硬件基础。无论是政府还是企业都在大力推动汽车自动化技术的发展和应用。但由于受到技术成熟度和成本等因素的制约,自动驾驶技术仍处于不断发展阶段。本文基于自动驾驶汽车的预
自20世纪后期,量子计算与量子通信便成为计算机科学、通信、数学和物理的一个交叉和前沿学科.与经典的数字通信情形一样,为了实现量子计算和量子通信,就必须解决量子纠错问题.1996年,Calderbank、Shor以及Steane同时独立地给出了如何运用数学工具构造量子纠错码的第一种系统而有效的方法,并建立起经典纠错码与量子纠错码之间的桥梁.这极大地促进了量子纠错码的蓬勃发展.此后,便引发了人们对量子
随着信息技术的不断发展,纠错码理论在信息安全中发挥越来越重要的作用。根据实际需求选取特定的编码是纠错码理论的一个关键问题,其中用到的循环码是纠错码理论研究的一个热点。循环码不仅可以通过高效的电路实现,而且在移动通信、雷达、航天等领域有广泛的应用。常循环码是循环码的推广和发展,不仅继承了循环码的良好特性而且有灵活的参数,然而相对于循环码的理论研究而言,常循环码理论还需要进一步完善和发展。尤其是常循环
有源相控阵雷达(Active Phased Array Radar,APAR)的独特优势在于每一个天线单元均配备有一个发射/接收组件(Transmit/Receive Module,TRM),从而具有可靠性高、功能性强等诸多独特的优点,因此在军事航天等领域中受到越来越多的重视。正因如此,APAR在实际工况中会由于内部器件热功耗以及外部环境温度的变化产生明显的阵面热变形,进而造成雷达主瓣增益损失、副
三叶木通(Akebia trifoliata(Thunb.)Koidz.)是木通科(Lardizabalaceae)木通属(Akebia)攀援式常年生落叶藤本植物,在我国作为药用和野果食用已有千年之久。三叶木通叶绿体基因组、三叶木通全长转录组及三叶木通果实(八月瓜)的代谢组学相对匮乏,严重阻碍了三叶木通在食品和分子生物学领域研究的开展。随着种植面积的扩大,微生物导致的果实染病现象日益凸显,对这一新
稀土硼化物具有高熔点、高硬度、低功函数、低蒸发率、耐离子轰击能力强与物理化学性质稳定等特点,是一类优良的电子发射材料,在电子束加工仪器、粒子束加速器、精密电子分析仪器以及动态真空系统的电子器件等领域有广泛应用。目前针对稀土硼化物阴极的研究主要集中在通过实验制备掺杂稀土硼化物单晶,寻找合适掺杂成分从而提高其电子发射性能这一方面,而对于其功函数、电子结构与掺杂改变电子发射性能的机理研究尚少。本文以轻稀
近些年来,国民经济的快速发展使得汽车保有量急剧增加,引发了众多能源环境问题和交通问题。无人驾驶系统和智能交通系统是解决这些问题的可行方案,该领域的相关技术是当前的研究热点并已取得一定突破,但受到技术瓶颈和法律法规等因素的限制,仍难以在实际场景中得到全面应用,需要不断完善和提高。自主泊车技术是无人驾驶技术的重要构成部分,泊车环境的复杂化导致泊车难度增加,使得对泊车技术应用的诉求逐渐强烈。另外,泊车工
近年来,深度神经网络在图像生成和图像识别等计算机视觉应用领域取得了许多突破。然而由于目前深度学习理论不够完善,深度神经网络在计算机视觉任务的应用上仍然存在许多问题。首先,对于深度神经网络泛化能力的成因仍在探索之中,而模型在实际测试中的性能取决于其泛化能力;其次,深度神经网络的训练过程不稳定,尤其是生成对抗网络(Generative Adversarial Network,GAN),这对其在具体任务