论文部分内容阅读
设Ω是RN中的C2有界区域,应用问题-p"(s)=g(p(s)),p(s)>0,s∈(0,∞),p(0)=0,lims→∞ p'(s)=β≥0解的性质,构造比较函数,得到了奇异非线性Dirichlet问题-△u=g(u)+λ|▽u|q+σ,u>0,x∈Ω,u|(e)Ω=0的唯一解u∈C2(Ω)∩ C(Ω)满足lim d(x)→O u(x)/p(d(x))=ξo,这里q∈[0,2],λ,σ是非负参数,T(ξ0)=lim t→O+ g(ξot)/ξog(t)=1,9(s)在(0,∞)是正的单