论文部分内容阅读
使用多层感知器神经网络模型来识别和控制非线性电子节气门系统。首先,神经网络模型在不同运行条件下辨识,它代表非线性节气门伺服系统的动态特性。其次,使用油门辨识器网络模型来设计和训练神经网络控制器模型,从而使节气门系统的追踪控制位置遵循参考模型。油门辨识器网络模型用于辅助以离线模式训练的神经网络控制器。神经网络控制器使用相同的输入来进行训练,这些输入被反馈到实际的节气门系统以产生相同的输出。通过调整神经网络控制器的权重和偏差参数,使用自适应算法来减小输出之间的差异。对使用神经网络控制器的节气门控制系统的跟踪控