论文部分内容阅读
提出采用考虑到精度/差异权衡的SVM作为弱分类器的一种新的组合分类诊断方法——Diverse AdaBoost-SVM。该方法通过在一组具有适当精度的弱分类器中进一步选择具有较大差异性的弱分类器,对这些具有较大差异性的弱分类器进行组合,从而较好解决AdaBoost算法中存在的精度/差异权衡的难题;同时该方法也较好地解决了现有的AdaBoost方法存在的弱分类器本身参数选取困难问题及训练轮数丁的合理选取问题。通过对基准数据库的测试及航空发动机故障样本的诊断,结果表明和其他方法相比,Diverse AdaBo