论文部分内容阅读
研究复杂背景下运动目标的识别和跟踪.提出了一种新的基于模板匹配的神经网络结构,将模板与跟踪窗内待匹配区域的像素按环形排列,分别作为神经网络的阈值和输入,选择跟踪窗内与模板相对应的各环差值均较小的区域作为识别结果.由于模板匹配过程中像素按环形排列,因此对于目标的平移和旋转均具有不变性,同时,算法计算量比最小绝对差累加和算法略小.将该算法应用到实时跟踪系统中,实验结果表明该算法可满足跟踪系统实时性要求,验证了算法的有效性。