基于WPEE-RF的模拟电路故障诊断

来源 :计算机测量与控制 | 被引量 : 0次 | 上传用户:sun89ok
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为实现高效的模拟电路故障诊断,提出了基于小波包能量熵(WPEE)和随机森林(RF)的模拟电路故障诊断方法;选择合适的测试激励信号,监测电路收集数据,对模拟电路监测数据进行5层小波包分解,计算多频带WPEE向量表征故障特征,由RF分类器实现故障诊断;仿真实验结果表明,该方法在双二次滤波电路、Sallen-key滤波电路容差故障诊断以及对数放大器综合故障诊断中体现出良好的性能,故障诊断准确率达99%以上,且该方法具有参数鲁棒性,RF模型训练时间短;较支持向量机和BP网络方法相比,表现出更好的综合性能,更能贴近
其他文献
近年来,为保护公众隐私,互联网上的很多流量被加密传输,传统的基于深度包检测、机器学习的方法在面对加密流量时,准确率大幅下降。随着深度学习自动学习特征的应用,基于深度学习算法的加密流量识别和分类技术得到了快速发展,本文对这些研究进行综述。首先,简要介绍基于深度学习的加密流量检测应用场景。然后,从数据集的使用和构建、检测模型和检测性能3个方面对已有工作进行总结和评价,其中检测技术重点论述数据的预处理、不平衡数据集的处理、神经网络构建、实时检测等方法。最后,讨论当前研究中出现的问题和未来发展方向和前景,为该领域