论文部分内容阅读
针对BP神经网络故障诊断存在网络结构复杂、训练时间长、精度不高的问题,将粗糙集、微粒群算法、遗传算法引入到柴油机故障诊断中,提出了基于粗糙集理论与改进BP神经网络相结合的柴油机故障诊断算法。算法采用自组织映射方法对连续属性离散化,利用粗糙集理论对特征参数进行属性约简,使用微粒群算法优化BP网络结构,从而缩短训练时间,有效提高故障诊断的准确度。最后用柴油机的实际诊断结果验证了该算法的可行性、快速性和准确性。