论文部分内容阅读
针对当前Folksonomy用户偏好挖掘方法只能在二元关系基础上挖掘用户偏好、只关注单用户偏好而忽略用户群偏好、只注重静态偏好而忽视时间推移带来的动态变化等问题,提出基于FCA的Folksonomy用户偏好挖掘模型,通过构建Folksonomy多值背景及单值背景,在概念格可视化基础上分析Folksonomy用户行为、用户偏好及其转移。该模型的提出为Folksonomy系统中的用户偏好的获取提供新思路。
In view of the current Folksonomy user preference mining method can only mine user preference on the basis of binary relation, only pay attention to single user preference and ignore user group preference, only pay attention to static preference and neglect the dynamic change brought by time. Folksonomy user preference mining model, by constructing Folksonomy multi-valued background and single-valued background, based on the concept of lattice visualization Folksonomy user behavior, user preferences and their transfer. The proposed model provides a new idea for user preference acquisition in Folksonomy system.