论文部分内容阅读
The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network. While semiconductor gas sensors have many advantages such as excellent sensi?tivity and low cost, their application is limited by their high operating temperature. Two-dimensional (2D) lay?ered materials, typically molybdenum disulfide -(MoS2) nanosheets, are emerging as promising gas-sensing mate?rials candidates owing to their abundant edge sites and high in-plane carrier mobility. This work aims to over?come the sluggish and weak response as well as incom?plete recovery of -MoS2 gas sensors at room temperature by sensitizing -MoS2 nanosheets with PbS quantum dots (QDs). The huge amount of surface dangling bonds of QDs enables them to be ideal receptors for gas molecules. The sensitized -MoS2 gas sensor exhibited fast and recoverable response when operated at room temperature, and the limit of -NO2 detection was estimated to be 94 ppb. The strategy of sensitizing 2D nanosheets with sensitive QD receptors may enhance receptor and transducer functions as well as the utility factor that determine the sensor performance, offering a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors.