论文部分内容阅读
提出一种应用于科技文献分类的文本特征选择方法.该方法运用了聚类与关联规则的思想,对文本特征进行逐层选择.同时为提高K-means算法的聚类性能,对K-means算法做了相应的改进,通过为算法的终止条件设定标准值来减少算法迭代次数,减少学习时间;通过删除由信息动态变化而产生的冗余信息,来减少动态聚类过程中的干扰.采用KNN分类器进行对比实验,实验结果表明,该特征选择方法在科技文献分类方面有较高的准确率.